首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设Q(x,y)在Oxy平面有一阶连续偏导数,积分∫L2xydx+Q(x,y)dy与路径无关.t 恒有 ∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy, (*) 求Q(x,y).
设Q(x,y)在Oxy平面有一阶连续偏导数,积分∫L2xydx+Q(x,y)dy与路径无关.t 恒有 ∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy, (*) 求Q(x,y).
admin
2018-11-21
72
问题
设Q(x,y)在Oxy平面有一阶连续偏导数,积分∫
L
2xydx+Q(x,y)dy与路径无关.
t
恒有 ∫
(0,0)
(t,1)
2xydx+Q(x,y)dy=∫
(0,0)
(1,t)
2xydx+Q(x,y)dy, (*)
求Q(x,y).
选项
答案
首先由单连通区域上曲线与路径无关的充要条件得[*](2xy)=2x.对x积分得Q(x,y)=x
2
+φ(y),下面由(*)定出φ(y),为此就要求(*)中的曲线积分,得到φ(y)满足的关系式.再求φ(y). 通过求原函数计算积分: 2xydx+[x
2
+φ(y)]dy=d[x
2
y+∫
0
y
φ(s)ds]. 由(*)式,得[x
2
y+∫
0
y
φ(s)ds]|
(0,0)
(t,1)
=[x
2
y+∫
0
y
φ(s)ds]|∫
(0,0)
(1,t)
, 即 t
2
+∫
0
1
φ(s)ds=t+∫
0
t
φ(s)ds ([*]t). 求导得 2t=1+φ(t) ([*] t),即 φ(t)=2t一1,易验证它满足上式. 因此 Q(x,y)=x
2
+φ(y)=x
2
+2y一1.
解析
转载请注明原文地址:https://kaotiyun.com/show/sdg4777K
0
考研数学一
相关试题推荐
曲线y=有()渐近线.
设L为椭圆=1,其周长为π,则(2xy+3x2+5y2)ds=___________.
设=().
设A是三阶矩阵,α1=[1,2,-2]T,α2=[2,1,-1]T,α3=[1,1,t]T是线性非齐次方程组AX=b的解向量,其中b=[1,3,一2]T,则().
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组Ax=b的通解X=().
将函数f(x)=在x=0处展成幂级数.
设曲线y=ax2(x≥0,常数a>0)与曲线y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D。(Ⅰ)求D绕x轴旋转一周所成的旋转体的体积V(a);(Ⅱ)求a的值,使V(a)为最大。
设L为曲线y=上从O(0,0)到的曲线段,则cosy2dx-2xysiny2dy=_______。
设区域D={(x,y)|x2+y2≤1,x≥0},计算二重积分I=
随机试题
维生素D缺乏性手足抽搐症最常见的症状是
将薄板的边缘相互折扣、压紧的连接方法称为咬缝,咬缝的结构有双扣、________、________。
患者,男,50岁。家属代诉:患者于今日下午外出散步,突然昏仆,不省人事,半身不遂,目合口张,鼻鼾息微,遗尿,汗出,四肢厥冷,脉细弱。治疗应首选
A、易发肿疡B、易伤肺C、善行而数变D、多挟湿E、易伤阳气火邪具有的致病特点是()
项目投资估算选用的指标与具体工程之间存在标准或者条件差异时,应()。
贝恩指数代表的是()。
下列有关前后任注册会计师的说法中,正确的是()。
已知数列{an}为等差数列,若下列四项中有三项属于此数列,则不属于此数列的一项是().
杂言——关于著作的
语句int*p=&k;定义了指针p,与这个语句等效的语句序列是()。
最新回复
(
0
)