首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一l,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一l,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2019-01-19
52
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一l,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为三阶单位矩阵。
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
,故 βα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=一2α
1
, 即α
1
是矩阵B的属于特征值-2的特征向量。 由关系式B=A
5
一4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=一2得B的三个特征值为μ
1
=一2,μ
2
=1,μ
3
=1。 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
1
,α
2
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0。 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 (1,一1,1)[*]=0, 得其基础解系为[*],故可取α
2
=[*] β的全部特征向量为k
1
[*],其中k
1
≠0,k
2
,k
3
不同时为零。
解析
转载请注明原文地址:https://kaotiyun.com/show/snP4777K
0
考研数学三
相关试题推荐
设矩阵A=I-ααT,其中I是,n阶单位矩阵,α是n维非零列向量,证明:(1)A2=A的充要条件是αTα=1;(2)当αTα=1时,A是不可逆矩阵.
求的收敛域_______.
计算二次积分=_______.
差分方程6yt+1+9yt=3的通解为_______.
曲线渐近线的条数为
知A、B均是三阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第一列和第2列对换得到B1,又A1B1=,则AB=__________.
设随机变量X和Y相互独立,其概率密度为求随机变量Z=XY的概率密度g(x).
已知随机变量X与Y的相关系数ρ=,则根据切比雪夫不等式有估计式P{|X一Y|≥}≤________.
设在[0,1]上f"(x)>0,则f’(0),f’(1),f(1)—f(0)或f(0)—f(1)的大小顺序是()
设f(x)=(Ⅰ)证明f(x)是以π为周期的周期函数;(Ⅱ)求f(x)的值域。
随机试题
一般在工程初期很难描述工作范围和性质,或工期紧迫,无法按常规编制招标文件招标时采用的成本加酬金合同形式是()。
结节性甲状腺肿伴甲状腺功能亢进适合的治疗是老年甲状腺功能亢进,药物治疗后多次复发适合的治疗是
关于药品销售的有关管理错误的是
某家庭以抵押贷款方式购买了一套价值为25万元的住宅,如果该家庭首期付款为房价的30%,其余为在10年内按月等额偿还的抵押贷款,年贷款利率为15%,问月还款额为多少?如果该家庭25%的收入可以用来支付住房消费,问该家庭的月收入应为多少才能购买上述住宅?
某村庄位于山体滑坡事故频发区,山体滑坡时有发生,造成了一定的人员伤亡与财产损失。市政府决定将该村整体迁出,但很多村民故土难离,拒绝搬迂,如果你是村委会工作人员,你会怎么做?
社会治安综合治理的领导力量是各级公安机关。()
简述汉朝的法律指导思想。
2009年5月,某县电力公司经批准架设的高压电线路,与某甲的私有平房屋之间垂直距离大于4米。2011年4月,某甲未经当地有关部门批准,将平房加盖为三层半楼房,东边三楼阳台与高压电线之间最近的距离只有40厘米,当地电力部门对某甲的翻建行为未加阻止。2011年
Although"liedetectors"arewidelyusedbygovernments,policedepartmentsandbusinesses,theresultsarenotalwaysaccurate.
WhichcountryisknownastheLandofMapleLeaf?
最新回复
(
0
)