首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2. (Ⅰ)求a的值; (Ⅱ)求正交变换χ=Oy,把f(χ1,χ2,χ3)化成标准形; (Ⅲ)求方程f(χ1,χ2,χ3)=0
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2. (Ⅰ)求a的值; (Ⅱ)求正交变换χ=Oy,把f(χ1,χ2,χ3)化成标准形; (Ⅲ)求方程f(χ1,χ2,χ3)=0
admin
2017-06-26
44
问题
已知二次型f(χ
1
,χ
2
,χ
3
)=(1-a)χ
1
2
+(1-a)χ
2
2
+2χ
3
2
+2(1+a)χ
1
χ
2
的秩为2.
(Ⅰ)求a的值;
(Ⅱ)求正交变换χ=Oy,把f(χ
1
,χ
2
,χ
3
)化成标准形;
(Ⅲ)求方程f(χ
1
,χ
2
,χ
3
)=0的解.
选项
答案
(Ⅰ)由于二次型f的秩为2,即对应的矩阵A=[*]的秩为2, 所以有[*]=-4a=0,得a=0. (Ⅱ)当a=0时,A=[*],计算可得A的特征值为λ
1
=λ
2
=2,λ
3
=0.解齐次线性方程组(2E-A)χ=0,得A的属于λ
1
=2的线性无关的特征向量为 η
1
=(1,1,0)
T
,η
2
=(0,0,1)
T
解齐次线性方程组(0E-A)χ=0,得A的属于λ
3
=0的线性无关的特征向量为 η
3
=(-1,1,0)
T
易见η
1
,η
2
,η
3
两两正交.将η
1
,η
2
,η
3
单位化得A的标准正交的特征向量为 e
1
=[*](1,1,0)
T
,e
2
=(0,0,1)
T
,e
3
=[*](-1,1,0)
T
取Q=(e
1
,e
2
,e
3
),则Q为正交矩阵. 令X=Qy,得f的标准形为 f(χ
1
,χ
2
,χ
3
)=λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
=2y
1
2
+2y
2
2
(Ⅲ)在正交变换X=Qy下,f(χ
1
,χ
2
,χ
3
)=0化成2y
1
2
+2y
2
2
=0,解之得y
1
=y
2
=0,从而 χ=[*]=y
3
e
3
=k(-1,1,0)
T
,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/YVH4777K
0
考研数学三
相关试题推荐
证明方程在区间(0,+∞)内有且仅有两个不同实根.
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
设曲线方程为y=e-x(x≥0).(Ⅰ)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出
设向量组(Ⅰ)a1,a2,…,as,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i:1,2,…,s)均可以由a1,…,as线性表示,则().
设A为3阶矩阵,a1,a2为A的分别属于特征值-1、1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3,求P-1AP.
函数y=C1ex+C22e-2x+xex满足的一个微分方程是().
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
设当时,求矩阵B;
设函数f(x)在(一∞,+∞)内连续,其导函数y=f’(x)的曲线如图所示,则f(x)有
曲线
随机试题
4岁患儿,无症状,入托体检时进行PPD试验,硬结直径:15ram,胸片提示右肺门结构紊乱,可见一结节状影,考虑为无症状原发型肺结核。该患儿选择下列哪种治疗为宜
有关体温的描述,下列正确的是()。
解决瓣膜病变的根本办法是
在选择零售商业物业租户时,首先要考虑的因素就是零售商的业务范围。()
婚姻登记的程序包括申请、()、决定等阶段。
共情在咨询活动中的重要性体现在()。
赵志系甲市人,大学毕业后分配到中国人民解放军驻乙市某部工作。其父母去世时在甲市留有私房两间,因无其他子女及亲属,赵志在继承该房以后一直将其闲置未用。赵志数年未回家乡,遂写信给其同学询问房屋情况。1998年8月20日赵志获悉,1997年5月赵志家邻居孩子结婚
毫无疑问,在今日武断批判中医的人中,不乏以“科学”代言人自居者,将各种自己不懂的知识系统一棍子打死,归人( ),这种态度不能不使人怀疑其言论与知识的讨论无关,另有用意;不过,在抗拒这种学霸的同时,我们也不必要陷入相反的( )。坦率地说,身为一个中医,我
设计一个宽带城域网将涉及“三个平台与一个出口”,即网络平台、业务平台、管理平台和
Ifyoudon’tliketoplaybasketball,you______aswellstayathome.
最新回复
(
0
)