首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A,B可交换、即AB=BA,且A有n个互不相同的特征值.证明: (1)A的特征向量都是B的特征向量; (2)B相似于对角矩阵.
设n阶矩阵A,B可交换、即AB=BA,且A有n个互不相同的特征值.证明: (1)A的特征向量都是B的特征向量; (2)B相似于对角矩阵.
admin
2017-06-26
27
问题
设n阶矩阵A,B可交换、即AB=BA,且A有n个互不相同的特征值.证明:
(1)A的特征向量都是B的特征向量;
(2)B相似于对角矩阵.
选项
答案
由于A有n个互不相同特征值,故A有n个线性无关的特征向量,因此,如果(1)成立,则(2)成立,故只需证明(1). 下证(1):设α为A的特征向量,则有数λ使Aα=λα,两端左乘B,并利用AB=BA,得A(Bα)=λ(Bα),若Bα≠0,则Bα亦为A的属于特征值λ的特征向量,因方程组(λE-A)χ=0的解空间为1维的,故有数μ,使Bα=μα,故α亦为B的特征向量;若Bα=0,则Bα=0α,即α为B的属于特征值0的特征向量,总之,α必为B的特征向量,由于α的任意性,知A的特征向量都是B的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/nAH4777K
0
考研数学三
相关试题推荐
设函数f(x)在[0,1]上连续,(0,1)内可导,且3∫2/31f(x)dx=f(x),证明在(0,1)内存在一点,使f’(C)=0.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
设二维连续型随机变量的联合概率密度为确定a的值,使.
设随机变量X的密度函数为且已知,则θ=
设随机变量X的密度函数为f(x),方差DX=4,而随机变量Y的密度函数为2f(一2y),X且Y的相关系数求EZ,DZ;
已知A是3阶矩阵,α(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3设P=(α,Aα,A2α),求P-1AP.
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
求满足下列条件的直线方程:
设x轴正向到方向l的转角为ψ,求函数f(x,y)=x2-xy+y2在点(1,1)沿方向z的方向导数,并分别确定转角ψ,使得方向导数有(1)最大值,(2)最小值,(3)等于0.
设某酒厂有一批新酿的好酒,如果现在(假定t=0)就售出,总收人为R0元).如果窖藏起来待来日按陈酒价格出售,t年末总收入为假定银行的年利率为r,并以连续复利计息,试求窖藏多少年售出可使总收入的现值最大并求r=0.06时的t值.
随机试题
甲市A公司(需方)与乙市B公司(供方)签订一份销售合同,标的额400万人民币。合同约定的履行地为丙市某港口。此外,该合同还约定:“解决合同纠纷的方法及未尽事宜,由需方所在地有关部门处理。”后货物分别运抵丙市某港口及丁市某港口。由于货物缺损及质量等问题,A公
手工钨极氩弧焊焊接黄铜的焊接工艺及操作要领是怎样的?
物流企业代为管理的存货称为________。
刘某,女,59岁。吞咽困难7个月余,开始固体食物难入,后发展至水饮难入,出现面色苍白,精神疲惫,形寒肢冷,面浮足肿,脘腹胀满,舌质淡,苔白,脉沉细而弱。下列治法何者最宜
山茱萸具有的功效是()
下列药品中,属于高警示药品的是()。
关于商业银行申请基金代销业务资格应当具备的条件,下列说法正确的有( )。
直营连锁经营的特征不包括()。
编辑是一种专业性很强的工作,其活动内容包括()等。
下列关于构造方法的叙述中,错误的是
最新回复
(
0
)