首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A,B可交换、即AB=BA,且A有n个互不相同的特征值.证明: (1)A的特征向量都是B的特征向量; (2)B相似于对角矩阵.
设n阶矩阵A,B可交换、即AB=BA,且A有n个互不相同的特征值.证明: (1)A的特征向量都是B的特征向量; (2)B相似于对角矩阵.
admin
2017-06-26
42
问题
设n阶矩阵A,B可交换、即AB=BA,且A有n个互不相同的特征值.证明:
(1)A的特征向量都是B的特征向量;
(2)B相似于对角矩阵.
选项
答案
由于A有n个互不相同特征值,故A有n个线性无关的特征向量,因此,如果(1)成立,则(2)成立,故只需证明(1). 下证(1):设α为A的特征向量,则有数λ使Aα=λα,两端左乘B,并利用AB=BA,得A(Bα)=λ(Bα),若Bα≠0,则Bα亦为A的属于特征值λ的特征向量,因方程组(λE-A)χ=0的解空间为1维的,故有数μ,使Bα=μα,故α亦为B的特征向量;若Bα=0,则Bα=0α,即α为B的属于特征值0的特征向量,总之,α必为B的特征向量,由于α的任意性,知A的特征向量都是B的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/nAH4777K
0
考研数学三
相关试题推荐
设n元线性方程组Ax=b,其中A=,x=(x1,…,xn)T,b=(1,0,…,0)T.(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
[*]利用奇偶函数在对称区间上的积分性质得
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
求二元函数F(x,y)=zye-(x2+y2)在区域D={(x,y)|x≥0,y≥0}上的最大值与最小值.
设函数.其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中求:(A一3E)6.
求下列均匀曲线弧的质心:(1)半径为a,中心角为2α的圆弧;(2)心脏线ρ=a(1+cosψ),0≤ψ≤2π.
某企业生产某种商品的成本函数为C=a+aQ+cQ2,收入函数为R=lQ一sQ2,其中常数a,b,c,l,s都是正常数,Q为产量,求:当企业利润最大时,t为何值时征税收益最大.
一批产品有10个正品2个次品,任意抽取两次,每次取一个,抽取后不放回,求第二次抽取次品的概率.
设((x一1)(t一1)>0,x≠t),函数f(x)由下列表达式确定,求出f(x)的连续区间和间断点,并研究f(x)在间断点处的左右极限.
随机试题
下列关于玻璃管液位计的说法,错误的是()。
将检查测量合格的铅模,用管钳连接在下井的第一根油管底部,下油管()根后,装上自封封井器。
赵某去饭店就餐之时,在饭店正好碰到自己的弟弟遭一个流氓毒打,赵某立刻前去制止却反遭流氓的进攻,赵某无奈被迫自卫还击。正在这时,便衣民警钱某正好经过现场,未及表明自己的身份即迅速抓住赵某以制止其殴打。赵某以为钱某是流氓的同伙,随即抄起身边的椅子将钱某砸成重伤
如果注册会计师识别出超出正常经营过程的重大关联方交易导致的舞弊风险,下列程序中,通常能够有效应对该风险的是()。
己知某家庭向银行存款额为5000元,年利率为12%,按月计息,期限为1年,则1年后的本利和为()元。
《义务教育语文课程标准(2011年版)》对于第四学段(7~9年级)的学生识字与写字提出了明确的要求,下面正确的一项是()。
Whycan’tyoustopyour(eternal)complaining?
Weneedtofindoutwhathisplansareandact______.
【T1】我希望这个新学年成为对我的学生们有益的一年。(want…tobe)他们会在新学年学习很多东西,包括微积分、莎士比亚和失败。没错,就是失败。根据多种流传的说法,梭罗是个失败者。这位哈佛毕业生似乎把自己的大部分时间都用来在瓦尔登湖畔家
Althoughtherearebodylanguagesthatcancrossculturalboundaries,cultureisstillasignificantfactorinallbodylanguage
最新回复
(
0
)