首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1一2α1,Aα2一α1+2α2,Aα3一α2+2α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)A能否相似于对角矩阵,说明理由.
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1一2α1,Aα2一α1+2α2,Aα3一α2+2α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)A能否相似于对角矩阵,说明理由.
admin
2016-04-14
50
问题
设A是3阶矩阵,α
1
,α
2
,α
3
是3维列向量,α
1
≠0,满足Aα
1
一2α
1
,Aα
2
一α
1
+2α
2
,Aα
3
一α
2
+2α
3
.
(Ⅰ)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)A能否相似于对角矩阵,说明理由.
选项
答案
(Ⅰ)由题设条件,得 (A-2E)α
1
=0,(A-2E)α
2
=α
1
,(A-2E)α
3
=α
2
. 对任意常数k
1
,k
2
,k
3
,令 k
1
α
1
+k
2
α
2
+k
3
α
3
=0.① ①式两边左乘A~2E,得k
2
α
1
+k
3
α
2
=0;② ②式两边左乘A一2E,得k
3
α
1
=0. 因α
1
≠0,故k
3
=0,代回②式,得k
2
=0,代回①式得k
1
=0. 故k
1
α
1
+k
2
α
2
+k
3
α
3
=0[*]k
1
=k
2
=k
3
=0, 得证α
1
,α
2
,α
3
线性无关. (Ⅱ)由(Ⅰ)知 (A-2E)(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)[*] 故A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)[*] 因α
1
,α
2
,α
3
线性无关,故C=(α
1
,α
2
,α
3
)是可逆矩阵,则 C
-1
AC=B,即A~B. 又B有λ
1
=λ
2
=λ
3
=2,是三重特征值,但 [*] 由相似关系的传递性知,A[*]A,即A不能相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/suw4777K
0
考研数学一
相关试题推荐
设α1,α2……αn是n个n维向量,且已知a1x1+a2x2+…+anxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+(αn+α1)xn=0(**)何时只有零解?说明理由;何时有非零解?有非零解时,求
设[(x5+7x4+2)a-x]=b,b≠0,试求常数a,b的值.
设曲线L:(0≤t≤π/2)与l:x2+y2≤1(x≥0,y≥0)所围区域为D。计算I=(x2-y2+1)dxdy
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
求二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩和正、负惯性指数.
求幂级数的收敛域.
设实二次型f(x1,x2,x3)=(x1-x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数.求f(x1,x2,x3)的规范形.
已知三阶矩阵A=,记它的伴随矩阵为A*,则三阶行列式=_______.
设A是n阶矩阵,下列结论正确的是().
设随机变量X的绝对值不大于1,P(X=1)=1/4,P(X=-1)=1/8,而在事件{-1
随机试题
Amtrak—thelargestrailwaycompanyintheU.S.—wasexperiencingadeclininginrider-ship.【C1】________majorconcernstoAmtraka
成年人腹股沟管的长度是
甘草的适宜采收期是
应用乙胺嘧啶引起巨幼细胞贫血。此时宜选用何种药物对抗
购买经济适用住房满一定期限后,购房人可依法转让。()
下列关于企业回购股票的会计处理,不正确的是()。
以遗赠方式继承遗产,其份额的确定是()。
下列世界之最,说法不正确的是:
简述学习动机的强化理论的主要内容。
Thevastprojecthasbeencomparedwiththe【B1】______oftheEgyptianPyramidsorChina’sThreeGorgesDam.Fromthisweekend,te
最新回复
(
0
)