首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1一2α1,Aα2一α1+2α2,Aα3一α2+2α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)A能否相似于对角矩阵,说明理由.
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1一2α1,Aα2一α1+2α2,Aα3一α2+2α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)A能否相似于对角矩阵,说明理由.
admin
2016-04-14
74
问题
设A是3阶矩阵,α
1
,α
2
,α
3
是3维列向量,α
1
≠0,满足Aα
1
一2α
1
,Aα
2
一α
1
+2α
2
,Aα
3
一α
2
+2α
3
.
(Ⅰ)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)A能否相似于对角矩阵,说明理由.
选项
答案
(Ⅰ)由题设条件,得 (A-2E)α
1
=0,(A-2E)α
2
=α
1
,(A-2E)α
3
=α
2
. 对任意常数k
1
,k
2
,k
3
,令 k
1
α
1
+k
2
α
2
+k
3
α
3
=0.① ①式两边左乘A~2E,得k
2
α
1
+k
3
α
2
=0;② ②式两边左乘A一2E,得k
3
α
1
=0. 因α
1
≠0,故k
3
=0,代回②式,得k
2
=0,代回①式得k
1
=0. 故k
1
α
1
+k
2
α
2
+k
3
α
3
=0[*]k
1
=k
2
=k
3
=0, 得证α
1
,α
2
,α
3
线性无关. (Ⅱ)由(Ⅰ)知 (A-2E)(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)[*] 故A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)[*] 因α
1
,α
2
,α
3
线性无关,故C=(α
1
,α
2
,α
3
)是可逆矩阵,则 C
-1
AC=B,即A~B. 又B有λ
1
=λ
2
=λ
3
=2,是三重特征值,但 [*] 由相似关系的传递性知,A[*]A,即A不能相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/suw4777K
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 C
求函数f(x,y)=xy一x一y在由抛物线y=4—x2(x≥0)与两个坐标轴所围成的平面闭区域D上的最大值和最小值。
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=___
设A是n阶反对称矩阵,(Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;(Ⅱ)举一个4阶不可逆的反对称矩阵的例子;(Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
利用变量替换u=x,v=y/x,可将方程化成新方程为().
求二分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的重心,设曲线的线密度ρ=1.
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
设A,B皆为n阶矩阵,则下列结论正确的是().
设f(x)=u(x)+v(x),g(x)=u(x)一v(x),并设都不存在,下列论断正确的是()
随机试题
因税务机关计算错误致使纳税人少缴税款的,税务机关在法定期限内可以要求纳税人补缴税款。该法定期限为()
PTC术后应平卧
从投资者—业主—的角度而言,工程造价是指()。
碎石沥青混凝土在施工时,采用小料堆集料堆放,主要是为了()。
某有线电视台2008年10月份发生如下业务:有线电视节目收入25万元,有线电视初装费收入5万元,广告播映业务收入12万元,某卫视台购买其专题片播映权,取得收入8万元。下列业务处理正确的有()。
()管理水平体现了商业银行的整体经营管理水平。
汇鑫公司是C国最大的肉类加工企业,在屠宰和肉制品加工领域的市场地位和管理能力均居于国内第一位。S公司是世界第一大猪肉生产商,是发达国家U国排名第一的猪肉制品供应商和出口商,拥有U国十几个领先品牌。但是近年来由于企业内部管理存在诸多问题,公司经营一直处于举步
甲企业是一家有限合伙企业,由吴某、李某和赵某设立。其中,吴某为普通合伙人,李某和赵某为有限合伙人。2011年2月,甲企业接到乙公司发出一封电子邮件称:现有一批电器,包括某型号电视机180台,每台售价4500元;某型号电冰箱80台,每台售价2900元。如
下列运算符不能重载为友元函数的是()。
【B1】【B4】
最新回复
(
0
)