首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内有定义,且对任意x∈(一∞,+∞),y∈(一∞,+∞),成立f(x+y)=f(x)ey+f(y)ex,且f’(0)存在等于a,a≠0,则f(x)=________.
设f(x)在(一∞,+∞)内有定义,且对任意x∈(一∞,+∞),y∈(一∞,+∞),成立f(x+y)=f(x)ey+f(y)ex,且f’(0)存在等于a,a≠0,则f(x)=________.
admin
2015-08-17
30
问题
设f(x)在(一∞,+∞)内有定义,且对任意x∈(一∞,+∞),y∈(一∞,+∞),成立f(x+y)=f(x)e
y
+f(y)e
x
,且f’(0)存在等于a,a≠0,则f(x)=________.
选项
答案
axe
x
解析
由f’(0)存在,设法去证对一切x,f’(x)存在,并求出f(x).将y=0代入f(x+y)=f(x)e
y
+f(y)e
x
,得f(x)=f(x)+f(0)e
x
,所以f(0)=0.
令△x→0,得 f’(x)=f(x)+e
x
f’(0)=f(x)+ae
x
,所以f’(x)存在.解此一阶微分方程,得f(x)=e
x
(∫ae
x
.e
-x
dx+C)=e
x
(ax+C)因f(0)=0,所以C=0,从而得f(x)=axe
x
,如上所填.
转载请注明原文地址:https://kaotiyun.com/show/t1w4777K
0
考研数学一
相关试题推荐
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的1/8,求全部融化需要的时间.
设f(χ)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf′(ξ)-f(ξ)=f(2)-2f(1).
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
已知对于n阶方阵A,存在自然数走,使得Ak=0.试证明矩阵E—A可逆,并写出其逆矩阵的表达式(E为n阶单位矩阵).
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
已知η1=[一3,2,0]T,η2=[一1,0,一2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
设A为m×n实矩阵,E为n阶单位矩阵,矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
已知f(x)的定义域为(0,+∞),且满足xf(x)=1+∫0xu2f(u)du。求f(x)
随机试题
_______安装在后保险杠上,它向汽车外部发射超声波并接收反射回来的超声波,以测量后方阻碍物离车后的距离。
对中毒所致的昏迷病人应观察下述变化:_________、_________,_________和_________。
大面积烧伤最主要的死因是
我国《证券法》规定的信息公开披露的法定标准是()。
本期发生额是一个时点指标,它说明某类经济内容的增减变动情况。()
甲公司下设审计委员会和内部审计部门,并由审计委员会对内审部门的工作进行复核。下列选项中,属于审计委员会对内审部门进行复核范围的有()。
关于社团法人的下列表述,正确的是()。
生成树优先级的取值范围是——。
A、Themanisopposedtodrinking.B、Lastyear’sChristmasdinnerpartywasasuccess.C、Thewomandoesnotwanttogotothisye
A、Syntheticfuel.B、Solarenergy.C、Alcohol.D、Electricity.D题目询问在未来的几十年中,将使用什么来发动汽车。关键在于听到文章的第2句:“每个人都将驾驶由电力发动的汽车(electrically-
最新回复
(
0
)