首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使P-1AP=A.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使P-1AP=A.
admin
2016-10-26
51
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使P
-1
AP=A.
选项
答案
(I)由已知条件有 A(α
1
,α
2
,α
3
) =(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B. 因为α
1
,α
2
,α
3
线性无关,矩阵P
1
可逆,所以[*]AP
1
=B,即矩阵A与B相似.由 [*] 知矩阵b的特征值是1,1,4,故矩阵A的特征值是1,1,4. (Ⅱ)对矩阵b,由(E一B)x=0,得λ=1的特征向量β
1
=(一1,1,0)
T
, β
2
=(一2,0,1)
T
; 由(4E—b)x=0,得λ=4的特征向量β
3
=(0,1,1)
T
. 那么令P
2
=(β
1
,β
2
,β
3
)=[*] 于是 [*] 故当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(一α
1
+α
2
,一2α
1
+α
3
,α
2
+α
3
)时, P
-1
AP=A=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tFu4777K
0
考研数学一
相关试题推荐
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
证明下列函数是有界函数:
设n阶矩阵A的元素全为1,则A的n个特征值是________.
A是n阶矩阵,且A3=0,则().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
随机试题
患者,发作性胸痛1年,近10天来胸痛频作,痛剧彻心,连及左侧肩背,伴有身寒肢冷,喘息不得卧,舌苔白,脉象沉紧。选方为
A.N–氧化物B.N–羟基化合物C.环氧化物D.硫醚E.砜亚砜类药物经还原生成()。
根据《建筑法》规定,建筑工程主体结构的施工()。
某场地软弱土层厚20m,采用水泥土桩进行地基加固,初步方案为面积置换率m=0.2,桩径d=0.5m,桩长l=10m,水泥掺合量取18%,经计算后沉降约20cm,为将工后沉降控制在15cm以内,需对初步方案进行修改,()最有效。
建设工程项目施工成本管理最根本、最重要的基础工作是()
细水雾灭火系统故障中稳压泵规定时间内不能恢复压力的处理办法不包括()。
某作家指控某杂志社侵犯其著作权,法院裁定作家胜诉,该作家取得杂志社的经济赔偿款40000元,该赔偿收入应缴纳个人所得税额( )元。
Consumersarebeingconfusedandmisledbythehodge-podgeofenvironmentalclaimsmadebyhouseholdproducts,accordingtoa"g
1,3,9,15,25,(),49,63,81
在局域网所出现的网络故障中,有75%都是由()引起。
最新回复
(
0
)