首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使P-1AP=A.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使P-1AP=A.
admin
2016-10-26
65
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使P
-1
AP=A.
选项
答案
(I)由已知条件有 A(α
1
,α
2
,α
3
) =(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B. 因为α
1
,α
2
,α
3
线性无关,矩阵P
1
可逆,所以[*]AP
1
=B,即矩阵A与B相似.由 [*] 知矩阵b的特征值是1,1,4,故矩阵A的特征值是1,1,4. (Ⅱ)对矩阵b,由(E一B)x=0,得λ=1的特征向量β
1
=(一1,1,0)
T
, β
2
=(一2,0,1)
T
; 由(4E—b)x=0,得λ=4的特征向量β
3
=(0,1,1)
T
. 那么令P
2
=(β
1
,β
2
,β
3
)=[*] 于是 [*] 故当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(一α
1
+α
2
,一2α
1
+α
3
,α
2
+α
3
)时, P
-1
AP=A=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tFu4777K
0
考研数学一
相关试题推荐
0是n-1重特征值,另一个是3n
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
用集合运算律证明:
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
A是n阶矩阵,且A3=0,则().
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式丨B-1-E丨=__________.
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
随机试题
根据隧道二次衬砌纵向分段施工要求,分段长度一般为()m。
下列房地产转让中,可以不办理土地使用权出让手续的有()。
B注册会计师是V公司2005年度会计报表审计的项目经理,在审计过程中,需对助理人员编制的有关投资的审计工作底稿进行复核。请你代为做出正确的专业判断。
老年大学的出现体现了当代高等教育的发展趋势是()。
简述学生学习的特殊性。
给定资料1.“2010年‘六-五’世界环境日纪念大会——青年环境友好使者推动全民低碳减排暨《节能减排保护环境》特种邮票首发仪式”6月5日在京召开。环境保护部部长周生贤在致辞中强调,青年一代要积极行动起来,做中国环保新道路的探索者和实践者,加强环境
许多创业成功的人士都没有漂亮的学历,但这并没有妨碍他们成功。事实告诉我们,漂亮的学历对于成功具有重要作用。但是,一个人,只要有准确的信息分析能力、高度的经济敏感和果断的个人勇气,就能很快学会如何做出正确的决定,对于一个缺少以上三种素养的人,漂亮的学历没有什
大同小异:去伪存真
Lookatthechartbelow.Itshowsarestaurant’sincome,totalexpenditureandadvertisingcostsduringaneight-monthperiod.
Itismy(believe)______thatjoggingisgoodforthebodyandforthemind.
最新回复
(
0
)