首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使P-1AP=A.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使P-1AP=A.
admin
2016-10-26
52
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使P
-1
AP=A.
选项
答案
(I)由已知条件有 A(α
1
,α
2
,α
3
) =(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B. 因为α
1
,α
2
,α
3
线性无关,矩阵P
1
可逆,所以[*]AP
1
=B,即矩阵A与B相似.由 [*] 知矩阵b的特征值是1,1,4,故矩阵A的特征值是1,1,4. (Ⅱ)对矩阵b,由(E一B)x=0,得λ=1的特征向量β
1
=(一1,1,0)
T
, β
2
=(一2,0,1)
T
; 由(4E—b)x=0,得λ=4的特征向量β
3
=(0,1,1)
T
. 那么令P
2
=(β
1
,β
2
,β
3
)=[*] 于是 [*] 故当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(一α
1
+α
2
,一2α
1
+α
3
,α
2
+α
3
)时, P
-1
AP=A=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tFu4777K
0
考研数学一
相关试题推荐
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
用集合运算律证明:
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
设A是m×n矩阵,B是,n×m矩阵,则
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
随机试题
参加重庆谈判的中共领导是()
患儿,女,8岁。发热2周人院。查体:T38℃,P100次/分,咽充血,心肺无异常,双足背见两处环形红斑。Hb100g/L,WBC13.6×109/L,N0.82,L0.17,ESR50mm/h,CRP增高,ASO阳性,PPD(-),心电图
若甲因偷税罪被判处有期徒刑4年,则()对甲不适用。根据本案,对甲的量刑情节还有()。
孙某与甲公司签订了为期3年的劳动合同,月工资1200元(当地最低月工资标准为8()0元)。期满终止合同时,甲公司未向孙某提出以不低于原工资标准续订劳动合同意向,甲公司应向孙某支付的经济补偿金额为()。
甲股份有限公司于2012年1月1日向中国证监会申请向社会首次公开发行股票并在证券交易所上市。甲公司提交的有关资料如下:(1)2005年1月,A公司、B公司、C公司、D公司和E企业共同出资成立乙有限责任公司(以下简称乙公司),注册资本为人民币1.2
岩石:建材:家具
通过一系列实验,斯腾伯格从反应时变化上确定了对提取过程有独立作用的因素分别是()。
[*]
Howdidhesucceedaccordingtohimself?
Corporationsasagroupofferavarietyofjobs.Mostlargecompaniessendpeopletocollegestointerviewgraduatingstudentsw
最新回复
(
0
)