首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设流速V=(x2+y2)j+(z-1)k,求下列情形流体穿过曲面∑的体积流量Q(如图9.69): (Ⅰ)∑为圆锥面x2+y2=z2(0≤z≤1),取下侧; (Ⅱ)∑为圆锥体(z2≥x2+y2,0≤z≤1)的底面,法向量朝上.
设流速V=(x2+y2)j+(z-1)k,求下列情形流体穿过曲面∑的体积流量Q(如图9.69): (Ⅰ)∑为圆锥面x2+y2=z2(0≤z≤1),取下侧; (Ⅱ)∑为圆锥体(z2≥x2+y2,0≤z≤1)的底面,法向量朝上.
admin
2016-10-26
65
问题
设流速V=(x
2
+y
2
)j+(z-1)k,求下列情形流体穿过曲面∑的体积流量Q(如图9.69):
(Ⅰ)∑为圆锥面x
2
+y
2
=z
2
(0≤z≤1),取下侧;
(Ⅱ)∑为圆锥体(z
2
≥x
2
+y
2
,0≤z≤1)的底面,法向量朝上.
选项
答案
(Ⅰ)首先,用曲面积分表示流量,即 Q=[*](x
2
+y
2
)dzdx+(z-1)dxdy. 直接投影到xy平面上代公式求Q. 由∑的方程z=[*],∑在xy平面上的投影区域D: x
2
+y
2
≤1(z=0)[*] [*] (Ⅱ)圆锥体(z
2
≥x
2
+y
2
,0≤z≤1)的底面∑即x
2
+y
2
≤1,z=1,它垂直于zx平面,在∑上z-1=0,因此 Q=[*](x
2
+y
2
)dzdx+(z-1)dxdy=0+0=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/tGu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
下列各对函数中,两函数相同的是[].
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时.证明丨A丨≠0.
设n元线性方程组Ax=b,其中(I)证明行刿式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
因为积分区域关于直线y=x对称,[*]
求不定积分csc3xdx.
已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界,试证:
函数u=ln(x2+y2+z2)在点M(1,2,-2)处的梯度gradu|M=__________.
设f(t)在[0,+∞)上连续,Ω(t)={x2+y2+z2≤t2,z≥0),S(t)是Ω(t)的表面,D(t)是Ω(t)在xOy平面的投影区域,L(t)是D(t)的边界曲线,当t∈(0,+∞)时,恒有求f(t).
随机试题
下列哪部作品揭露了封建贵族的罪恶
(2017年第157题)重症急性肾衰竭透析治疗的方法有
某病人,男,58岁无痛性全程肉眼血尿半个月,B超检查发现肾脏有一5cm×6cm大小实质性占位。
下列药物禁用于ITP患者的是
营养不良测定腹壁皮下脂肪厚度的部位
以下哪种材料可以作为泡沫混凝土的泡沫剂?[2007年第031题]
依据《安全生产法》的规定,从业人员的工伤保险费由()缴纳。
设备工程中的总承包主要有以下形式:( )。
莫扎特对音乐的最大贡献体现在歌剧领域,他主张“________”,一生创作了很多令世人为之震撼的作品。
Sandra’smethodprovedtobe______inhandlingmultipletasksatonce.
最新回复
(
0
)