首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ(x)是以2π为周期的连续函数,且Ф’(x)=φ(x),Ф(0)=0. (1)求方程y’+ysin x=φ(x)ecosx的通解; (2)方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
设φ(x)是以2π为周期的连续函数,且Ф’(x)=φ(x),Ф(0)=0. (1)求方程y’+ysin x=φ(x)ecosx的通解; (2)方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
admin
2016-06-25
80
问题
设φ(x)是以2π为周期的连续函数,且Ф’(x)=φ(x),Ф(0)=0.
(1)求方程y’+ysin x=φ(x)e
cosx
的通解;
(2)方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
选项
答案
(1)该方程为一阶线性微分方程,通解为 y=e
一∫sin xdx
[∫φ(x)e
cos x
se
∫sin xdx
dx+C] =e
cos x
[∫φ(x)e
cos x
.e
一cos x
dx+C] =e
cos x
[∫φ(x)dx+C]=e
cos x
[Ф(x)+C](其中C为任意常数). (2)因为Ф’(x)=φ(x),所以Ф(x)=∫
0
x
φ(t)dt+C1, 又Ф(0)=0,于是Ф(x)=∫
0
x
φ(t)dt 而Ф(x+2π)=∫
0
x+2π
φ(t)dt=∫
0
x
φ(t)dt+∫
x
x+2π
φ(t)dt=Ф(x)+∫
0
2π
φ(t)dt,所以,当∫
0
2π
φ(t)dt=0时,Ф(x+2π)=Ф(x),即Ф(x)以2π为周期. 因此,当∫
0
2π
φ(t)dt=0时,方程有以2π为周期的解.
解析
转载请注明原文地址:https://kaotiyun.com/show/tnt4777K
0
考研数学二
相关试题推荐
设an=∫0π/4tannxdx.对任意的参数λ,讨论级数的敛散性,并证明你的结论.
证明:
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.
设随机变量X的概率密度为fX(x)=求Y=eX的概率密度fY(y).
设函数f(x)在点x0处的导数f’(x0)存在,α,β是常数,求极限
设函数f(x)连续,且f(0)≠0,求极限.
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别为p1=18-2Q1p2=12-Q2其中p1,p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求;量,单位:吨)并且该企业生产
求方程x(lnx-lny)dy-ydx=0的通解。
微分方程y"+2y’+5y=0的通解为________。
随机试题
车床的长丝杠是用来车削()的。
一般油气藏中均存在游离气,如果油气藏中没有游离气体,则圈闭中最凸起的地带为()。
悬浮聚合体系一般由单体、水、分散剂、引发剂组成。()
下述描述不符合遗传性肿瘤的特点的是
A.右肺水平裂外侧部上移B.侧位呈底向前胸壁、尖指向肺门的三角形阴影C.正位片底向膈面、尖指向肺门的三角形影D.纵隔向健侧移位E.斜裂向前上方移位右肺下叶不张的X线表现为
目前最常用的制作种植体的材料为
治疗慢性粒细胞性白血病之阴虚内热证,应首选
下列属于行政合同的是()。
【2015.辽宁鞍山】在知觉过程中,人们力求根据已有知识经验对知觉对象作出某种解释,使其具有一定意义,即知道它“是什么”,并能用语词把它表示出来,这叫作()。
随着地形抬升、湿度加大而形成的雾气,在太行山的峡谷和丘陵之间形成了_______的场景,原本峻峭的山岭像是披上了一层_______的细纱,把太行山的挺拔峥嵘包裹了起来。填入画横线部分最恰当的一项是:
最新回复
(
0
)