首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ(x)是以2π为周期的连续函数,且Ф’(x)=φ(x),Ф(0)=0. (1)求方程y’+ysin x=φ(x)ecosx的通解; (2)方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
设φ(x)是以2π为周期的连续函数,且Ф’(x)=φ(x),Ф(0)=0. (1)求方程y’+ysin x=φ(x)ecosx的通解; (2)方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
admin
2016-06-25
121
问题
设φ(x)是以2π为周期的连续函数,且Ф’(x)=φ(x),Ф(0)=0.
(1)求方程y’+ysin x=φ(x)e
cosx
的通解;
(2)方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
选项
答案
(1)该方程为一阶线性微分方程,通解为 y=e
一∫sin xdx
[∫φ(x)e
cos x
se
∫sin xdx
dx+C] =e
cos x
[∫φ(x)e
cos x
.e
一cos x
dx+C] =e
cos x
[∫φ(x)dx+C]=e
cos x
[Ф(x)+C](其中C为任意常数). (2)因为Ф’(x)=φ(x),所以Ф(x)=∫
0
x
φ(t)dt+C1, 又Ф(0)=0,于是Ф(x)=∫
0
x
φ(t)dt 而Ф(x+2π)=∫
0
x+2π
φ(t)dt=∫
0
x
φ(t)dt+∫
x
x+2π
φ(t)dt=Ф(x)+∫
0
2π
φ(t)dt,所以,当∫
0
2π
φ(t)dt=0时,Ф(x+2π)=Ф(x),即Ф(x)以2π为周期. 因此,当∫
0
2π
φ(t)dt=0时,方程有以2π为周期的解.
解析
转载请注明原文地址:https://kaotiyun.com/show/tnt4777K
0
考研数学二
相关试题推荐
设f(x)的一个原函数为F(x),且F(x)为方程xy′+y=ex的满足(x)=1的解.(1)求F(x)关于x的幂级数;(2)求的和.
设f(x)在[-a,a](a>0)上有四阶连续的导数,且存在.(1)写出f(x)的带拉格朗日余项的麦克劳林公式;(2)证明:存在ξ1,ξ2∈[-a,a].使得
设事件A,B独立.证明:事件都是独立的事件组.
设二维随机变量(X,Y)的联合密度函数为(1)求随机变量X,Y的边缘密度函数;(2)判断随机变量X,Y是否相互独立;(3)求随机变量Z=X+2Y的分布函数和密度函数.
设[(x5+7x4+2)a-x]=b,b≠0,试求常数a,b。
设f(x)在[a,b]上连续,且x→a+时函数f(x)的极限存在,则函数f(x)在(a,b]上有界。
下列各题中均假定f’(x0)存在,按照导数定义,求出下列各题中A的值。
试确定积分在a取什么值时收敛,取什么值时发散。
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
随机试题
DearMr.Suzuki,ThegoodswereceivedonJuly15werefoundnottomatchourorder.ThegoodsweorderedwereItemNo.2345
镰状细胞贫血病人血红蛋白(HbS)的β链与正常人血红蛋白(HbA)的β链有一个氨基酸残基的差别,即HbA中的()被()置换。
A.布洛卡区受损B.角回受损C.颞上回后部受损D.额中回后部E.顶叶受损失写症
综合单价是按招标文件中分部分项()项目的特征描述确定的。
建设工程安全事故处理的原则有()。
一般中小企业实施会计电算化的合理做法是()。
思想观念的价值,在竞争中才会_________,在实践中才能_________。“我不同意你的看法,但我誓死捍卫你说话的权利”,这是一种_________,更是一种自信。填入划横线部分最恰当的一项是()。
Ithinkuniformsaredemeaningtothehumanspiritandtotallyunnecessaryinademocraticsociety.Uniformstelltheworldthat
(16年)求幂级数的收敛域及和函数.
Manyoftheirideasarebeingincorporatedintoorthodoxmedicaltreatment.
最新回复
(
0
)