首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设常数a>,函数f(x)=ex一ax2,证明方程f(x)=0在区间(0,+∞)内有且仅有两个实根。
设常数a>,函数f(x)=ex一ax2,证明方程f(x)=0在区间(0,+∞)内有且仅有两个实根。
admin
2018-05-25
90
问题
设常数a>
,函数f(x)=e
x
一ax
2
,证明方程f(x)=0在区间(0,+∞)内有且仅有两个实根。
选项
答案
在区间(0,+∞)内,f(x)=e
x
一ax
2
=0,其等价于φ(x)=[*]一a=0,可讨论φ(x)=0在(0,+∞)内的实根个数。 由于 [*] 令φ’(x)=0,得驻点x=2,列表如下: [*] 则当x=2时,φ(x)取得极小值φ(2)=[*]φ(x)=+∞,[*]φ(x)=+∞,所以φ(x)=0在(0,2)和(2,+∞)上分别有且仅有一个实根,因此φ(x)在(0,+∞)内有且仅有两个实根,即f(x)在(0,+∞)上有且仅有两个实根。
解析
转载请注明原文地址:https://kaotiyun.com/show/tLg4777K
0
考研数学一
相关试题推荐
设总体X的分布函数为:其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:β的最大似然估计量.
A、A~B,C~D.B、A~D,B~CC、A~C,B~D.D、A,B,C,D中没有相似矩阵.B观察矩阵A,B,C,D知,有r(A)=r(B)=r(C)=r(D)=1,故A,B,C,D均有特征值λ=0,且因r(0E一A)=r(OE—B)=r(0E—
设正项级数收敛,正项级数发散,则中结论正确的个数为()
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cχ=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cχ=0的基础解系.
函数u=在点M0(1,1,1)处沿曲面2z=χ2+y2在点M0处外法线方向n的方向导数=________.
求空间曲线积分J=∫Ly2dχ+χydy+χzdz其中L是圆柱面χ2+y2=2y与平面y=z-1的交线,从χ轴正向看去取逆时针方向.
(Ⅰ)求累次积分J=(Ⅱ)设连续函数f(χ)满足f(χ)=1+∫χ1f(y)f(y-χ)dy,记I=∫01f(χ)dχ,求证:I=1+∫01f(y)dy∫0yf(y-χ)dχ,(Ⅲ)求出I的值.
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f’(c)|≤2a+
(96年)设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c是(0,1)内任一点,证明|f’(c)|≤
设随机变量X服从参数为λ>0的泊松分布,随机变量Y在0到X之间任取一个非负整数,试求概率P(Y=2).
随机试题
收入差距现象是一把双刃剑,对社会经济发展的作用具有[a]二重性,即合理、合法且适度的收入差距具有积极意义,而不合理不合法且过大的收入差距会带来消极影响。现在,有人对收入差距问题产生了一些思想困惑,有的甚至提出了收入差距的产生和扩大是[b]了积极性,还是[c
异长自身调节是指心脏的每搏输出量取决于()
炎症时,内皮细胞与白细胞黏着主要是由于
卫生桥桥体龈面与牙槽嵴黏膜之间的间隙至少为
能增强两个药材原有疗效的配伍是()
根据《招标投标法》的规定,下列关于投标邀请书的表述中不正确的是()。
论述群体动力的表现。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
(湖南大学2013)在某国债券市场现有两种债券可供投资者选择:(1)一级市场发行的A债券,面值为1000元,期限9个月,发行价格950元;(2)二级市场交易的B债券,该债券是2年前发行的,名义期限为5年,面值1000元,年利率9%,到期后一次性还本付息(单
RemovingDamsP1:Inthelastcentury,manyofthedamsintheUnitedStateswerebuiltforwaterdiversion,agriculture,factor
最新回复
(
0
)