首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设常数a>,函数f(x)=ex一ax2,证明方程f(x)=0在区间(0,+∞)内有且仅有两个实根。
设常数a>,函数f(x)=ex一ax2,证明方程f(x)=0在区间(0,+∞)内有且仅有两个实根。
admin
2018-05-25
67
问题
设常数a>
,函数f(x)=e
x
一ax
2
,证明方程f(x)=0在区间(0,+∞)内有且仅有两个实根。
选项
答案
在区间(0,+∞)内,f(x)=e
x
一ax
2
=0,其等价于φ(x)=[*]一a=0,可讨论φ(x)=0在(0,+∞)内的实根个数。 由于 [*] 令φ’(x)=0,得驻点x=2,列表如下: [*] 则当x=2时,φ(x)取得极小值φ(2)=[*]φ(x)=+∞,[*]φ(x)=+∞,所以φ(x)=0在(0,2)和(2,+∞)上分别有且仅有一个实根,因此φ(x)在(0,+∞)内有且仅有两个实根,即f(x)在(0,+∞)上有且仅有两个实根。
解析
转载请注明原文地址:https://kaotiyun.com/show/tLg4777K
0
考研数学一
相关试题推荐
设向量组(i)α1=(2,4,一2)T,α2=(一1,a一3,1)T,α3=(2,8,b一1)T;(ii)β1=(2,b+5,一2)T,β2=(3,7,a一4)T,β3=(1,2b+4,一1)T.记A=(α1,α2,α3),B=(β1,β2,β3).
(Ⅰ)设0<x<+∞,证明存在η,0<η<1,使(Ⅱ)求出(Ⅰ)中η关于x的函数具体表达式η=η(x),并求出当0<x<+∞时函数η(x)的值域.
设常数a>0,曲线上点(a,a,a)处的切线方程是________.
已知曲线在直角坐标系中由参数方程给出:χ=t+e-t,y=2t+e-2t(t≥0).(Ⅰ)证明该参数方程确定连续函数y=y(χ),χ∈[1,+∞).(Ⅱ)证明y=y(χ)在[1,+∞)单调上升且是凸的.(Ⅲ)求y=
设平面上连续曲线y=f(χ)(a≤χ≤b,f(χ)>0)和直线χ=a,χ=b及χ轴所围成的图形绕χ轴旋转一周所得旋转体的质心是(,0,0),则的定积分表达式是_______.
求定积分的值
设都是正项级数.试证:
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-,
随机试题
A.遗传性球形红细胞增多症B.遗传性椭圆形红细胞增多症C.丙酮酸激酶缺乏D.珠蛋白生成障碍性贫血脾切除对消除贫血和黄疸有效的疾病是
关于电突触传递,错误的是
四肢厥冷可见于
刘某,男,21岁,患有间歇性精神分裂症,常常在外惹事生非,其父母为此非常烦心,向一法律工作者求助。以下该法律工作者向齐某父母的解答中不正确的是()。
施工段是用以表达流水施工的空间参数。为了合理地划分施工段,应遵循的原则包括( )。
世界服装生产巨头Z公司开创了新的生产模式。该公司通过遍布全球各地的信息网络迅速捕获服装流行趋势和流行元素,总部的设计师团队随即以最快的速度仿制、修改。为了保证生产效率,采购和生产都在欧洲进行,亚洲、南美洲等低成本地区只生产基本款。一件服装从设计到摆L货架最
现有如下假设:所有纺织工都是工会成员;部分梳毛工是女工;部分纺织工是女工;所有工会成员都投了健康保险;没有一个梳毛工投了健康保险。下列结论中从上述假设中推不出来的是()。
(87年)设f(x)在x=a处可导,则等于
下列各选项中,不属于序言性注释的是()。
Intherealworldmostpeoplehaveadefinitedislike【C1】______certainsortsofworkathome.Twoofthesetasksareironingclo
最新回复
(
0
)