首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,则对线性方程组(I)AX=0和(Ⅱ)ATAX=0,必有 ( )
设A为n阶实矩阵,则对线性方程组(I)AX=0和(Ⅱ)ATAX=0,必有 ( )
admin
2018-09-20
53
问题
设A为n阶实矩阵,则对线性方程组(I)AX=0和(Ⅱ)A
T
AX=0,必有 ( )
选项
A、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解
B、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解
C、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解
D、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解
答案
A
解析
方程AX=0和A
T
AX=0是同解方程组.
转载请注明原文地址:https://kaotiyun.com/show/tRW4777K
0
考研数学三
相关试题推荐
设A,B均是n阶矩阵,且秩r(A)+r(B)<n,证明:A,B有公共的特征向量.
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
已知Aαi=iαi(i=1,2,3),其中α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T.求矩阵A.
下列矩阵中不能相似对角化的是
设f(x)在[a,b]上有连续的导函数,且f(b)=0,当x∈[a,b]时|f’(x)|≤M,证明:
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(a,b)使f’(ξ)=0.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn.求方程组AX=b的通解.
设α1=(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
参数a取何值时,线性方程组有无数个解?求其通解.
(16年)设二维随机变量(X,Y)在区域D={(χ,y)|0<χ<1,χ2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z).
随机试题
多项目集成管理中,采用项目群管理方式有利于()
投保人办理建筑意外伤害保险的投保手续后,应将投保有关信息以()的方式告诉被保险人。
建设工程项目总概算是确定整个建设工程项目从筹建开始到竣工验收、交付使用所需的全部费用的文件,它是由()等汇总编制而成。
甲30岁,因患精神疾病完全丧失辨识能力。由下列有监护能力的人按顺序担任甲的监护人,则排在首位的是()。
下列税金中,应计入存货成本的有()。
在确定最佳现金持有量时,成本分析模式、存货模式和随机模式均需考虑的因素是()。
高温津贴是针对高温条件下从事经济建设和企业生产经营活动的职工发放的特殊工资性补偿。根据上述定义,下列属于高温津贴的是()。
口头调查又称为()。
胎儿一开始就具备一定的差异。麦克法内尼通过胎儿对噪声的反应,将其分为()
Exercise,everyoneadvises!Butimmediately,whenyoutry,yourunintotrouble.61)Thereissomuchcontradictory,sometimesi
最新回复
(
0
)