首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在二阶实矩阵构成的线性空间中 (2)求向量在基{Ei}和基{Di}(i=1,2,3,4)下的坐标. (3)求一非零向量B使B在基{Ei}和基{Di}(i=1,2,3,4)下的坐标相等.
在二阶实矩阵构成的线性空间中 (2)求向量在基{Ei}和基{Di}(i=1,2,3,4)下的坐标. (3)求一非零向量B使B在基{Ei}和基{Di}(i=1,2,3,4)下的坐标相等.
admin
2020-09-25
99
问题
在二阶实矩阵构成的线性空间中
(2)求向量
在基{E
i
}和基{D
i
}(i=1,2,3,4)下的坐标.
(3)求一非零向量B使B在基{E
i
}和基{D
i
}(i=1,2,3,4)下的坐标相等.
选项
答案
(1)显然有[*] 从而有(D
1
,D
2
,D
3
,D
4
)=(E
1
,E
2
,E
3
,E
4
)[*] 所以由基{E
i
}到基{D
i
}的过渡矩阵为[*] (2)因为[*]=a
11
E
1
+a
12
E
2
+a
21
E
3
+a
22
E
4
,从而可得A在基E
1
,E
2
,E
3
,E
4
下的坐标为(a
11
,a
12
,a
21
,a
22
)
T
. 由于(D
1
,D
2
,D
3
,D
4
)=(E
1
,E
2
,E
3
,E
4
)[*],所以有 [*] (3)设向量B=[*](k
1
,k
2
,k
3
,k
4
不全为零)在基{E
i
}和基{D
i
}下的坐标相等,则有 [*] 解得(k
1
,k
2
,k
3
,k
4
)
T
=k(1,1,1,一1)
T
,k为不等于零的任意常数,所以[*]其中k为不等于零的常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/tWx4777K
0
考研数学三
相关试题推荐
设A是5阶方阵,且A2=O,则r(A*)=_________.
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_____.
微分方程的通解是________.
设三阶行列式D3的第二行元素分别为1、一2、3,对应的代数余子式分别为一3、2、1,则D3=________。
设A是n阶矩阵,对于齐次线性方程组Ax=0,如果矩阵A中的每行元素的和均为0,且r(A)=n-1,则方程组的通解是______
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T,试讨论当a,b为何值时。(Ⅰ)β不能由α1,α2,α3线性表示;(Ⅱ)β可由α1,α2,α3唯一地线性表示,并求出表
(98年)设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:(1)A2;(2)矩阵A的特征值和特征向量.
[2010年]设f1(x)为标准正态分布的概率密度,f2(x)为[-1,3]上均匀分布的概率密度.若为概率密度,则a,b应满足().
随机试题
解决投资争端时,国际仲裁庭裁决适用的法律包括【】
某地进行首次糖尿病普查,可得出
甲公司向乙公司发出要约,欲向其出售一批货物。要约发出后,甲公司因进货渠道发生困难而欲撤回要约。甲公司撤回要约的通知应当()。
某工程项目估算总投资2200万元,其中施工估算价1000万元,设备采购估算1000万元,勘察估算43万元,设计估算100万元,监理估算价57万元。在施工招标过程中,业主委托该省建委进行招标,按照法律程序确定以公开招标的方式分阶段进行招标。问题:
我国城镇道路分为()。
货运单据,即各种方式运输单据的统称,它包括()。
下列各项中,不属于增量预算基本假定的是()。
根据关税法律制度的规定,下列各项中,海关可以酌情减免关税的是()。(2014年)
A、32B、37C、50D、60A
ForadevelopingcountrylikeIndiawhoseecologicalandsocio-economicsystemsarealreadyunderpressurefromrapidurbaniza
最新回复
(
0
)