首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=Λ;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=Λ;
admin
2021-02-25
87
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解.
求正交矩阵Q和对角矩阵A,使得Q
T
AQ=Λ;
选项
答案
对α
1
,α
2
正交化,令b
1
=α
1
=(-1,2,-1)
T
, [*] 再分别将b
1
,b
2
,α
3
单位化,得 [*] 则Q为正交矩阵,且Q
T
AQ=∧.
解析
转载请注明原文地址:https://kaotiyun.com/show/tZ84777K
0
考研数学二
相关试题推荐
下列矩阵中两两相似的是
设f(x)在[a,b]上连续,在(a,b)内可导(0≤a<b≤).证明:存在ξ,η∈(a,b),使得
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A是3阶矩阵,特征值为1,一1,一2,则下列矩阵中可逆的是
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
已知向量组α1,α2,α3和β1,β2,β3,β4都是4维实向量,其中r(α1,α2,α3)=2,r(β1,β2,β3,β4)>1,并且每个βi与α1,α2,α3都正交.则r(β1,β2,β3,β4)=
(1997年)已知且A2-AB=I,其中I是3阶单位矩阵。求矩阵B.
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
随机试题
严重肝功能不全的患者,不宜选用:
对于小肠上皮细胞吸收糖的叙述,恰当的是
男性,40岁,突发畏寒、发热及肝区疼痛l周。查体:体温39.0℃,无黄疸,右上腹压痛伴肌紧张,肝肋下3cm,肝区叩痛阳性。血WBC14×109/L。腹部B超:肝右后叶直径8cm的液性暗区。如确定该处为化脓性炎症,最常见的致病菌为
味极苦的药材是
有法谚云:“法律为未来作规定,法官为过去作判决”。关于该法谚,下列哪一说法是正确的?
下列装置,属于蒸汽压缩式制冷机组组成部分的有()。
可以不采用临时支护的立井施工作业方式的是()。
根据下列材料回答问题。以下哪条曲线能正确反映2009—2013年住宅用地面积的变化情况?()
Australianchildrenarevisitingsocialmediawebsitesatanincreasinglyyoungerage,anewsurveysuggests,withoneinfive"
Theydidn’t______theweddingbecauseofaheavyrain.
最新回复
(
0
)