首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=Λ;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=Λ;
admin
2021-02-25
92
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解.
求正交矩阵Q和对角矩阵A,使得Q
T
AQ=Λ;
选项
答案
对α
1
,α
2
正交化,令b
1
=α
1
=(-1,2,-1)
T
, [*] 再分别将b
1
,b
2
,α
3
单位化,得 [*] 则Q为正交矩阵,且Q
T
AQ=∧.
解析
转载请注明原文地址:https://kaotiyun.com/show/tZ84777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导(0≤a<b≤).证明:存在ξ,η∈(a,b),使得
设n阶方阵A的,n个特征值全为0,则().
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
下列矩阵中,正定矩阵是()
设f(x)在[a,b]上有二阶导数,且f’(x)>0.(Ⅰ)证明至少存在一点ξ∈(a,b),使∫abf(x)dx=f(b)(ξ一a)+f(a)(b—ξ);(Ⅱ)对(Ⅰ)中的ξ∈(a,6),求.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
[2010年]设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
随机试题
化脓性脑膜炎脑脊液检查结果是
以下不属于信息系统功能的是()
男,70岁。痰中带血1月余。吸烟10年,40支/天。胸部X线片:右肺门肿块影伴右上肺不张,支气管镜见右上肺开口内新生物。该患者肺癌的病理类型最可能是
A.木防己汤B.济生肾气丸C.小青龙汤D.六味地黄丸E.桂枝茯苓丸与抗组忮药联用,可减少西药用量的是
某设有集中空调的办公建筑,建筑高度105m,地下共2层,其中地下二层为停车库,地下一层设有消防水泵房、配变电室、备用发电机房、通风及排烟合用机房,地上共29层,裙房共5层,其中在三层有一多功能共享大厅(长×宽×高=54m×54m×15m,无外窗,设有防排烟
下列属于长翼形散热器特点的有()。
关于货币供给量的说法正确的是()。[2010年5月二级真题]
设立独立的放款执行部门,可实现放款环节的()。
甲企业从证券交易所以每股10元的价格购入某上市公司股票10000股,准备作为短期投资,另付有关税费750元,已知每股价格中包含0.5元已宣告但尚未发放的现金股利。甲企业取得该项短期投资时,应计入“交易性金融资产——成本”科目的金额为()元。
简述《中华民国民法》的主要内容和特点。(2010年一法综一第33题)
最新回复
(
0
)