首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足 (Ⅰ)求矩阵A的特征值; (Ⅱ)求矩阵A的特征向量; (Ⅲ)求矩阵A*一6E的秩.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足 (Ⅰ)求矩阵A的特征值; (Ⅱ)求矩阵A的特征向量; (Ⅲ)求矩阵A*一6E的秩.
admin
2019-07-28
71
问题
已知A是三阶矩阵,a
1
,a
2
,a
3
是线性无关的三维列向量,满足
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求矩阵A的特征向量;
(Ⅲ)求矩阵A
*
一6E的秩.
选项
答案
求特征值既可用特征多项式求之,也可根据相似矩阵有相同的特征值求之.特征向量既可用解齐次方程组(λ
i
E一A)X=0求之,也可用P
-1
AP=A求之,其中P的各个列向量就是A的特征值所对应的特征向量. 解 (Ⅰ)据已知条件,有 A[α
1
,α
2
,α
3
]=[—α
1
—3α
2
—3α
3
,4α
1
+4α
2
+α
3
,一2α
1
+3α
3
] [*] 那么由α
1
,α
2
,α
3
线性无关知,矩阵P
1
=[α
1
,α
2
,α
3
]可逆,且P
1
-1
AP
1
=B,即A与B相似.由矩阵B的特征多项式 [*] 得矩阵B的特征值为1,2,3,从而矩阵A的特征值也是1,2,3. (Ⅱ)由(E—B)x=0得基础解系 β
1
=[1,1,1]
T
, 即为矩阵B属于特征值λ=1的特征向量;由(2E—B)x=0得基础解系 β
2
=[2,3,3]
T
, 即为矩阵B属于特征值λ=2的特征向量;由(3E—B)x=0得基础解系 β
3
=[1,3,4]
T
, 即为矩阵B属于特征值λ=3的特征向量. 那么令P
2
=[β
1
,β
2
,β
3
],则有P
2
-1
BP
2
=[*].于是令 [*] =[α
1
+α
2
+α
3
,2α
1
+3α
2
+3α
3
,α
1
+3α
2
+4α
3
], 则有P
-1
AP=(P
1
P
2
)
-1
A(P
1
P
2
)=P
2
-1
(P
1
-1
AP
1
)P
2
[*] 故矩阵A属于特征值1,2,3的线性无关的特征向量依次为 k
1
(α
1
+α
2
+α
3
), k
2
(2α
1
+3α
2
+3α
3
), k
3
(α
1
+3α
2
+4α
3
), 其中k
1
,k
2
,k
3
≠0. (Ⅲ)由[*]及∣A∣=6知, [*] 从而 [*] 所以秩(A
*
一6E)=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/RWN4777K
0
考研数学二
相关试题推荐
设y=y(x)满足△y=△x+o(△x),且有y(1)=1,则∫02y(x)dx=________.
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,6]),g’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
设A=,B≠O为三阶矩阵,且BA=O,则r(B)=__________.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
(1)若A可逆且A~B,证明:A*~B*;(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得=a+b.
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex.确定常数a,b,c,并求该方程的通解.
设f(x)二阶可导,f(0)=f(1)=0且f(x)=-1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
求曲线гx=a(t-sint),y=a(1-cost)(0≤t≤2π)及y=0所围图形绕x轴旋转一周所得曲面的面积S.
随机试题
某以太网需要在交换机之间采用端口聚集协议PAgP配置以太网通道(EthernetChannel),当交换机端口被配置成()模式时,端口会主动发送PAgP分组,就以太网通道的使用情况进行协商。
实现内部控制目标的手段是设计和执行控制政策及程序。根据COSO发布的内部控制框架,内部控制包括的要素有()。
初步鉴定肠道致病菌与非致病菌最常使用的糖发酵试验是
叙述先天性肥厚性幽门狭窄的临床表现(包括症状、体征、X线检查)。
A、.湿热蕴结B、.气血瘀滞C、.肾阳亏虚D、.阴虚火旺E、.中气下陷急性前列腺增生症患者,症见:尿频、尿急、尿痛,会阴部胀痛,疼痛向大腿内侧放射,伴恶寒发热,口干口苦,舌红,苔黄腻,脉滑数。其证型是
在计算EVA资本时,要扣除的项目之一是()。
若x、y、z是三个连续的负整数,并且x>y>z。则下列表达式中属于正奇数的是:
哥特式建筑
现有一个大型公司的数据库系统,其业务主要以更新事务为主,并且不同部门的用户访问不同的数据子集。随着用户数量的增加,出现了性能瓶颈。该公司希望采用分布式数据库技术解决该问题。下列最适合该应用的数据分配方式是()。
Thesoundofgunshotshasbecomeanall-too-familiarandunwelcomeoccurrenceinmanycommunitiesacrossthenation.Whenshots
最新回复
(
0
)