首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0,证明: 存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0,证明: 存在ξ∈(a1,an),使得
admin
2021-11-25
55
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0,证明:
存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,..,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,..,a
n
的数,不妨设a
1
<c<a
2
<...a
n
令[*] 构造辅助函数ψ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然ψ(x)在[a
1
,a
n
]上n阶可导,且ψ(a
1
)=ψ(c)=ψ(a
2
)=...=ψ(a
n
)=0 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),....,ξ
n
(1)
∈(a
n-1
,a
n
),使得ψ’(ξ
1
(1)
)=ψ’(ξ
2
(1)
)=...=ψ’(ξ
n
(1)
)=0,ψ’(x)在(a
1
,a
n
)内至少有n个不同的零点,重复使用罗尔定理,则ψ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同的零点,设为c
1
,c
2
∈(a
1
,a
n
),使得 ψ
(n-1)
(c
1
)=ψ
(n-1)
(c
2
)=0 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得ψ
(n)
(ξ)=0 而ψ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tdy4777K
0
考研数学二
相关试题推荐
[*]
微分方程dy/dx=y/(x+y4)的通解是.
设f(x)在[1,+∞)上连续且可导,若曲线y=f(x),直线x=1,x=t(t>1)与x轴围成的平面区域绕x轴旋转一周所得的旋转体的体积为且f(2)=,求函数y=f(x)的表达式.
(1)设n元实二次型f(x1,x2,…,x3)=xTAx,其中A又特征值λ1,λ2,…,λn,且满足λ1≤λ2≤…≤λn.证明对任何n维列向量x,有λ1xTx≤λ2xTx≤…≤λnxTx.(2)设f(x1,x2,x3)=(x1,x2,x3)=xTAx
设f(x)在x=0处二阶可导f(0)=0且=2,则().
二阶常系数非齐次线性微分方程y"-2y’-3y=(2x+1)e-x的特解形式为()。
过点(一1,2,3)且垂直于直线并平行于平面7x+8y+9z+10=0的直线方程是()
设f(x)满足f(x)在x=0邻域二阶可导,f’(0)=0,且f’’(x)-xf’(x)=ex-1,则下列说法正确的是
关于二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
某湖泊水量为V,每年排入湖泊中内含污染物A的污水量为V/6,流人湖泊内不含A的水量为V/6,流出湖的水量为V/3.设2010年年底湖中A的含量5m0,超过国家规定指标,为了治理污染,从2011年年初开始,限定排入湖中含A污水的浓度不超过m0/V,问至多经过
随机试题
下列不构成专利权终止的法律事实是()
口底及颌下的急性蜂窝织炎危及生命的并发症是【】
十二指肠切除,可影响下述哪些营养素的吸收()。
设计利用穿堂风进行自然通风的板式建筑。其迎风面与夏季最多风向的夹角宜为()。
分析评价开发区规划实施对生态环境的影响,主要包括()影响。
2019年12月11日晚8时15分许,某建筑高度达50m的大型商场,因发电机组电气线路短路形成高温电弧,引燃周围装饰材料并蔓延成火灾。在事故发生的第一时间,法人代表李某(该商场的消防安全责任人)立即启动应急预案,同时组织单位的义务消防队扑救火灾。与此同时,
企业发行的可转换公司债券,期末按规定计算确定的利息费用进行账务处理时,可能借记的会计科目有()。
党章规定:我国社会各方面的基层单位只要有党员三人以上的,都要成立党的基层组织。()
根据下面材料回答下列题。2007年7月份北京市下列各区县中城镇居民最低生活保障人数最少的是()。
尽管这名病人被诊断为植物状态,但她保留了理解口头______并通过大脑活动、而非语音或动作做出______的能力。“欧文表示:”她决定与我们合作,根据我们的______想象特定的任务,这是一个清楚的______行为,确凿无疑地证明,她有意识地认识自己
最新回复
(
0
)