首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0,证明: 存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0,证明: 存在ξ∈(a1,an),使得
admin
2021-11-25
59
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0,证明:
存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,..,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,..,a
n
的数,不妨设a
1
<c<a
2
<...a
n
令[*] 构造辅助函数ψ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然ψ(x)在[a
1
,a
n
]上n阶可导,且ψ(a
1
)=ψ(c)=ψ(a
2
)=...=ψ(a
n
)=0 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),....,ξ
n
(1)
∈(a
n-1
,a
n
),使得ψ’(ξ
1
(1)
)=ψ’(ξ
2
(1)
)=...=ψ’(ξ
n
(1)
)=0,ψ’(x)在(a
1
,a
n
)内至少有n个不同的零点,重复使用罗尔定理,则ψ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同的零点,设为c
1
,c
2
∈(a
1
,a
n
),使得 ψ
(n-1)
(c
1
)=ψ
(n-1)
(c
2
)=0 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得ψ
(n)
(ξ)=0 而ψ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tdy4777K
0
考研数学二
相关试题推荐
(Ⅰ)求积分f(t)=(—∞<t<+∞).(Ⅱ)证明f(t)在(—∞,+∞)连续,在t=0不可导.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3α一2A2α.证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆;(Ⅱ)BTB是正定矩阵.
设F(x)=,则F(x)的定义域是________.
设f(x)是连续函数,F(x)是f(x)的原函数,则().
设可微函数f(χ,y)在点(χ0,y0)处取得极小值,则下列结论正确的是().
设f(x)在[a,b]上非负,在(a,b)内f"(x)>0,f’(x)<0.I1=[f(b)+f(a)],I2=∫abf(x)dx,I3=(b一a)f(b),则I1、I2、I3大小关系为()
设f(x)在[a,b]上有二阶导数,且f’’(x)≤0.证明
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足z=h(t)-,已知体积减少的速度与侧面积所成比例系数为0.9,问高度为130的雪堆全部融化需要多少时间.(其中长度单位是cm,时间单位为h)?
容量为10000m3的污水处理池,开始时池中全部是清水,现有污染物的质量浓度为1/3kg/m3的污水流经该处理池,流速为50m3/min,已知每分钟处理2%的污染物,求:经过多长时间,从池中流出的污染物的质量浓度为1/80kg/m3.
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
随机试题
“上网费每分钟0.05元”属于()。
阅读下列短文,回答有关问题。亲近泥土王充闾①游子归来,原都是为着寻觅,有所追怀的,更何况在这冷露清秋时节,在这忽而霏
实验室研究中有诸多因素会影响条件反射的形成,试分析下列条件中保证实验成功最关键的条件是
下列选项中属于间接薪酬的为:()。
根据GB/T2828.1转移规则,执行GB/T2828.1的加严检验时,已有累计5批不合格,暂停检验。在改进后,经负责部门同意恢复检验。应使用的抽样方案是()。
开展社区营养管理工作的基本程序分为()个步骤。
2016年9月,国务院印发《关于加快推进“互联网+政务服务”工作的指导意见》,对加快推进“互联网+政务服务”工作作出总体部署。提出要按照建设()的要求来优化服务流程,推行公开透明服务。
关于药品,下列说法错误的是:
求极限
Java语言的类型是()。
最新回复
(
0
)