首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0,证明: 存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0,证明: 存在ξ∈(a1,an),使得
admin
2021-11-25
57
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0,证明:
存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,..,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,..,a
n
的数,不妨设a
1
<c<a
2
<...a
n
令[*] 构造辅助函数ψ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然ψ(x)在[a
1
,a
n
]上n阶可导,且ψ(a
1
)=ψ(c)=ψ(a
2
)=...=ψ(a
n
)=0 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),....,ξ
n
(1)
∈(a
n-1
,a
n
),使得ψ’(ξ
1
(1)
)=ψ’(ξ
2
(1)
)=...=ψ’(ξ
n
(1)
)=0,ψ’(x)在(a
1
,a
n
)内至少有n个不同的零点,重复使用罗尔定理,则ψ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同的零点,设为c
1
,c
2
∈(a
1
,a
n
),使得 ψ
(n-1)
(c
1
)=ψ
(n-1)
(c
2
)=0 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得ψ
(n)
(ξ)=0 而ψ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tdy4777K
0
考研数学二
相关试题推荐
以下四个命题,正确的个数为()①设f(x)是(一∞,+∞)上连续的奇函数,则∫—∞+∞f(x)dx必收敛,且∫—∞+∞f(x)dx=0。②设f(x)在(一∞,+∞)上连续,且∫—RRf(x)dx。③若∫—∞+∞f(x)
设曲线的极坐标方程为r=eθ,则处的法线的直角坐标方程是________.
[*]
函数f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1)=1,证明:(Ⅰ)存在c∈(0,1),使得f(c)==2。
设函数y=y(x)由方程ex+y+cos(xy)=0确定,则dy/dx=_______.
设f(x)在[1,+∞)上连续且可导,若曲线y=f(x),直线x=1,x=t(t>1)与x轴围成的平面区域绕x轴旋转一周所得的旋转体的体积为且f(2)=,求函数y=f(x)的表达式.
方程y’’一3y’+2y=ex+1+excos2x的特解形式为()
已知A,B为3阶矩阵,且满足2A-1B=B-4E,其中E为3阶单位矩阵.证明:矩阵A-2E可逆;
已知a,b,c不全为零,证明方程组只有零解.
某人的食量是2500卡/天(1卡=4.1868焦),其中1200卡/天用于基本的新陈代谢,在健身运动中,他所消耗的为16卡/千克/天乘以他的体重。假设以脂肪形式存储的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎么随时间变化。
随机试题
A、环甲膜穿刺术B、气管切开术C、两者均可D、两者均不可口咽部肿胀病人的阻塞性窒息采用
房地产经纪人享有,而房地产经纪人协理不享有的权利有:()。
窗式空调器应安装在无阳光直接照射之处,空调器的后部与其他障碍物必须有( )的距离。
下列国际收支项目中,属于国际收支平衡表金融账户的是()。
属于淮河流域的河流是()。
一分为二地看幸福才能一分为二地看中国,一分为二地看中国才能既正视缺憾不___________,也才能淡看成就不___________。我们希望并且相信,立足于全体国民对于幸福认识的理性化以及对于幸福追求的自主化,幸福终能成为每一位中国人归依的家园。依次填入
高血压的并发症下列哪项较少见
下列哪些不属于全国人民代表大会常务委员会的职权?()
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
TrustMe,I’maRobot[A]Withrobotsnowemergingfromtheirindustrialcagesandmovingintohomesandworkplaces,roboticists
最新回复
(
0
)