首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
[2003年] 若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
admin
2019-05-10
64
问题
[2003年] 若矩阵A=
相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P
-1
AP=A.
选项
答案
先求出A的特征值,再由A可对角化的必要条件秩(λ
i
E一A)=n一k
i
求出6E-A的秩,从而求出a.再求出A的所有线性无关的特征向量,即可求出相似变换矩阵P. 由∣λE-A ∣=(λ一6)
2
(λ+2)=0得到A的特征值为λ
1
=λ
2
=6,λ
3
=一2. 由于A相似于对角矩阵,由命题2.5.3.2(3)知,秩(6E—A)=n一k
1
=3—2=1. 因而6E—A中二阶子式[*]=2a=0,即a=0. 因 6E—A=[*] 故属于λ
1
=λ
2
=6的两个线性无关的特征向量为α
1
=[1,2,0]
T
,α
2
=[0,0,1]
T
. 因 一2E—A=[*] 故属于λ
3
=一2的一个线性无关的特征向量为α
3
=[1,-2,0]
T
. 令P=[α
1
,α
2
,α
3
],则P可逆,且有 P
-1
AP=A=diag(6,6,一2).
解析
转载请注明原文地址:https://kaotiyun.com/show/tjV4777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(I)Ax=0和(Ⅱ)ATAx=0,必有()
设f(χ)在[a,b]上二阶可导,且f〞(χ)>0,取χi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1χ1+k2χ2+…+knχn)≤k1f(χ1)+k2f(χ2)+…+knf(χn).
设f(χ)在[0,+∞)内可导且f(0)=1,f′(χ)<f(χ)(χ>0).证明:f(χ)<eχ(χ>0).
设矩阵A满足(2E-C-1B)AT=C-1,且求矩阵A.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
设n阶矩阵A满足A2+A=3E,则(A-3E)-1=_______.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
设A是三阶矩阵,其特征值是1,2,3,若A与B相似,求|B*+E|.
设A=,若齐次方程组AX=0的任一非零解均可用α线性表示,则a=().
设向量组线性相关,但任意两个向量线性无关,求参数t.
随机试题
在蛋白质生物合成中转运氨基酸作用的物质是_______。
精子获能发生于
完全脱位牙再植的最佳时机是
不能杀灭芽胞的化学消毒剂是
民族自治地方的自治机关依法行使自治权。根据我国宪法规定,下列哪一机关不享有自治条例、单行条例制定权?()
能给世人留下某种主义的政治家寥寥无几。即便布莱尔当了十年首相,人们对他仍找不到合适的主义______。然而,就在撒切尔去世后仅两天时间里,舆论已达成这样一种共识,即英国人现在生活的国家是依照撒切尔主义______的,她大刀阔斧地给富人减税、实行劳工市场自由
中国古代著名的水利工程都江堰建于______时期。
【B1】【B11】
分发公钥需要以某种特定方式来分发,目前采用()来分发公钥。
JohnO’Connellrecommendsthatwe______toanewanti-virussoftwarepackage.
最新回复
(
0
)