首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
[2003年] 若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
admin
2019-05-10
95
问题
[2003年] 若矩阵A=
相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P
-1
AP=A.
选项
答案
先求出A的特征值,再由A可对角化的必要条件秩(λ
i
E一A)=n一k
i
求出6E-A的秩,从而求出a.再求出A的所有线性无关的特征向量,即可求出相似变换矩阵P. 由∣λE-A ∣=(λ一6)
2
(λ+2)=0得到A的特征值为λ
1
=λ
2
=6,λ
3
=一2. 由于A相似于对角矩阵,由命题2.5.3.2(3)知,秩(6E—A)=n一k
1
=3—2=1. 因而6E—A中二阶子式[*]=2a=0,即a=0. 因 6E—A=[*] 故属于λ
1
=λ
2
=6的两个线性无关的特征向量为α
1
=[1,2,0]
T
,α
2
=[0,0,1]
T
. 因 一2E—A=[*] 故属于λ
3
=一2的一个线性无关的特征向量为α
3
=[1,-2,0]
T
. 令P=[α
1
,α
2
,α
3
],则P可逆,且有 P
-1
AP=A=diag(6,6,一2).
解析
转载请注明原文地址:https://kaotiyun.com/show/tjV4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]上二阶可导,且f(0)=f′(0)=f(1)=f′(1)=0.证明:方程f〞(χ)-f(χ)=0在(0,1)内有根.
用变量代换χ=lnt将方程+e2χy=0化为y关于t的方程,并求原方程的通解.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=,Q=.(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设矩阵A,B满足A*BA=2BA-8E,且A=,则B=_______.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
设a是整数,若矩阵A=的伴随矩阵A*的特征值是4,-14,-14.求正交矩阵Q,使QTQ为对角矩阵.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设向量组线性相关,但任意两个向量线性无关,求参数t.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…αn-1,β线性无关.
随机试题
在Windows中,“开始”菜单“文档”选项中的文件可以是文本文件、Word文件,也可以是BMP文件或其他文件。()
肝性脑病患者禁用的灌肠液是
色甘酸钠抗变态反应的作用机制是
男性,44岁,有咳嗽、咳痰史5年,伴喘息,入院前3天因受寒咳嗽、喘加重,咳黄痰入院。入院时查体,桶状胸,叩诊过清音,肺肝浊音界右锁骨中线第7肋间,双肺干、湿性哕音及散在哮鸣音,肺功能:FEV1/FVC为56%,MVV60%,VC降低,RV/TLC为43%。
当感抗小于容抗时,则电压滞后电流,电路呈( )。
按CIF术语成交的合同,货物在运输途中因火灾被焚,应由()。
下列关于公积金个人住房贷款业务的职责分工的表述,正确的有()。
()已经成为了现代社会保障的核心内容。
新航路开辟后,导致欧洲封建主收入下降的原因是()。
Ifartseekstodivorceitselffrommeaningfulandassociativeimages,ifitholdsmaterialaloneasitsobjective,thenIthink
最新回复
(
0
)