首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3均为三维向量,则对任意的常数k,l,向量α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的( )
设α1,α2,α3均为三维向量,则对任意的常数k,l,向量α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的( )
admin
2018-04-08
51
问题
设α
1
,α
2
,α
3
均为三维向量,则对任意的常数k,l,向量α
1
+kα
3
,α
2
+lα
3
线性无关是向量组α
1
,α
2
,α
3
线性无关的( )
选项
A、必要非充分条件
B、充分非必要条件
C、充分必要条件
D、既非充分也非必要条件
答案
A
解析
若向量α
1
,α
2
,α
3
线性无关,则
(α
1
+kα
3
,α
2
+lα
3
)=(α
1
,α
2
,α
3
)
=(α
1
,α
2
,α
3
)K,对任意的常数k,l,矩阵K的秩都等于2,所以向量α
1
+kα
3
,α
2
+lα
3
一定线性无关。
而当
时,对任意的常数k,l,向量α
1
+kα
3
,α
2
+lα
3
均线性无关,但α
1
,α
2
,α
3
线性相关。故选择A。
转载请注明原文地址:https://kaotiyun.com/show/tlr4777K
0
考研数学一
相关试题推荐
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
已知α1,α2……αs线性无关,β可由α1,α2……αs线性表出,且表示式的系数全不为零.证明:α1,α2……αs,β中任意s个向量线性无关.
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明:矩阵Q可逆的充分必要条件是αTA一α≠b.
求微分方程的通解,并求满足y(1)=0的特解.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明:r(B)≥r+m—s.
设三阶方阵A、B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则行列式|B|=________.
已知3阶矩阵A与3维向量x.使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.(1)记P=(xAxA2x),求3阶矩阵B,使A=PBP—1;(2)计算行列式|A+E|.
随机试题
同义词“唯一诺”的差异主要表现在【】
若某图像的每个像素只有一个亮度分量,亮度值用8位二进制表示,则该图像是()
引起脑栓塞最常见的原因是
以下哪种材料不属于三大合成高分子材料?[2018-025]
银行监管当局的监管内容主要包括()。
苏轼《念奴娇.赤壁怀古》中“乱石穿空,________,________。”勾画出三国古战场的险要地势,“江山如画,________”将江山之胜与怀古之情融为一体,“________,谈笑间_______,”描绘出少年周瑜志得意满的情态。
根据以下资料,回答下列问题。2007年与2001年相比,小学四项达标率增幅最小的是:
OutsourcingreferstoCompanieswhouseoutsourcingusually
______,thegreatRomangeneral,invadedBritainforthefirsttimein55BC.
Backintheday,agoodreportcardearnedyouaparentalpatontheback,butnowitcouldbemoneyinyourpocket.Experiments
最新回复
(
0
)