首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上可导,f(1)=x2f(x)dx.证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.
设f(x)在区间[0,1]上可导,f(1)=x2f(x)dx.证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.
admin
2015-06-30
39
问题
设f(x)在区间[0,1]上可导,f(1)=
x
2
f(x)dx.证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.
选项
答案
令φ(x)=x
2
f(x),由积分中值定理得f(1)=[*]x
2
f(x)dx=c
2
f(c),其中c∈[0,[*]],即φ(c)=φ(1),显然φ(x)在区间[0,1]上可导,由罗尔中值定理,存在ξ∈(c,1)[*](0,1),使得φ’(ξ)=0.而φ’(x)=2xf(x)+x
2
f’(x),所以2ξf(ξ)+ξ
2
f’(ξ)=0,注意到ξ≠0,故2f(ξ)+ξf’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/tw34777K
0
考研数学二
相关试题推荐
周期为2π的函数f(x)在[一π,π)上定义为设f(x)的傅里叶级数的和函数为S(x),则S(2π)=_____.
设z是x,y的函数,且具有二阶连续的偏导数,并设经自变量的非奇异线性变换=,则常数a与常数k的和a+k=()。
已知A,B均是2×4矩阵,Ax=0有基础解系,ξ1=(1,3,0,2)T,ξ2=(1,2,-1,3)T;Bx=0有基础解系η1=(1,1,2,1)T,η2=(0,-3,1,a+1)T。
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2,其二次型矩阵A满足r(ATA)=2.求方程f(x1,x2,x3)=0的解。
设A=,X是2阶方阵。矩阵方程AX-XA=E,其中E是2阶单位矩阵,问方程是否有解?若有解,求满足方程的所有X,若无解,说明理由。
设g(x)可导,|g’(x)|<1,且当a≤x≤b时,a<g(x)<b,又x+g(x)-2f(x)=0,若{xn}满足xn+1=f(xn),n=0,1,2,…,x0∈[a,b]。证明:存在,并求其值。
设,其中x>a>0.证明eaf(x)<1.
证明:线性方程组(Ⅰ)有解的充分必要条件是方程组
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
随机试题
(2008年10月)我国《公司法》对股份有限公司发起人的要求是发起人应为_______,其中须有半数以上的发起人存币国境内有往所。
因咳嗽5天伴发热2天的支气管炎患儿,不应采取的治疗措施是
麻醉中的手术病人因溶血反应出现的唯一最早征象是()
某投资者买进执行价格为280美分/蒲式耳的7月小麦看涨期权,权利金为15美分/蒲式耳。卖出执行价格为290美分蒲式耳的7月小麦看涨期权,权利金为11美分/蒲式耳。则其损益平衡点为()美分/蒲式耳。
关于“净经营资产增加”的计算式子,下列不正确的有()。
无论一般纳税人还是小规模纳税人销售自己使用过的旧固定资产,自2002年1月1日起按4%的征收率减半征收增值税。()
劳动是创造财富的手段,也是获取和享有财富的前提。()
2011年,某市工业企业(规模以上,下同)用水总量193.27亿立方米,比上年减少1.66亿立方米。其中,取水总量41.26亿立方米,增加0.57亿立方米;河湖海冷却水86.25亿立方米,增加1.09亿立方米。2011年该市工业企业用水总量同比减少了
真理观中的首要问题是()
RowenaandBillyWrangleraremodelhighschoolstudents.Theystudyhardanddoextremelywellonachievementtests.Andnexty
最新回复
(
0
)