首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,问a,x为何值时,A相似于对角矩阵,a,x为何值时,A不能相似于对角矩阵,说明理由。
设A=,问a,x为何值时,A相似于对角矩阵,a,x为何值时,A不能相似于对角矩阵,说明理由。
admin
2022-03-14
111
问题
设A=
,问a,x为何值时,A相似于对角矩阵,a,x为何值时,A不能相似于对角矩阵,说明理由。
选项
答案
由|λE-A|=[*]=(λ-a)[λ(λ-2)-3]=(λ-a)(λ-3)(λ+1) 知A有特征值λ
1
=a,λ
2
=3,λ
3
=-1 ①当a≠3且a≠-1时,不论x取何值,A有三个互不相同的特征值,故A能相似于对角矩阵,且A~[*] ②当a=3时,A有特征值λ
1
=λ
2
=3,λ
3
=-1 当λ
1
=λ
2
=3时, [*] 当a=3且x=2时,r(3E-A)=1,则A对应的λ
1
=λ
2
=3有两个线性无关的特征向量,故A能相似于对角矩阵,且A~[*] 当a=3且x≠2时,r(3E-A)=2,则A对应的λ
1
=λ
2
=3只有一个线性无关的特征向量,故A不能相似于对角矩阵。 ③当a=-1时,A有特征值λ
2
=3,λ
1
=λ
3
=-1 当λ
1
=λ
3
=-1时, [*] 当a=-1且x=-6时,r(-E-A)=1,则A对应λ
1
=λ
3
=-1有两个线性无关的特征向量,故A能相似于对角矩阵,且A~[*] 当a=-1且x≠-6时,r(-E-A)=2,则A对应λ
1
=λ
3
=-1有一个线性无关的特征向量,故A不能相似于对角矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/MbR4777K
0
考研数学三
相关试题推荐
设,则在实数域上与A合同的矩阵为
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中正确的是
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是()
设f(x)=sin(cosx),φ(x)=cos(sinx),则在区间(0,)内()
设X1,X2,…,Xn来自正态总体X的简单随机样本,且Y1=(X1+X2+…+X6)/6,Y2=(X7+X8+X9)/3,证明统计量Z服从自由度为2的t分布.
求下列幂级数的收敛域:(Ⅲ)unxn的收敛半径R=3;(只求收敛区间)(Ⅳ)an(x一3)n,其中x=0时收敛,x=6时发散.
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.2
由曲线y=1—(x—1)2及直线y=0围成的图形(如图1—3—1所示)绕y轴旋转一周而成的立体体积y是()
函数y=f(x)在(-∞,+∞)上连续,其二阶导函数的图形如图所示,则f(x)的拐点个数为()
随机试题
Brandsarebasicallyapromise.Theytellconsumerswhatqualitytoexpectfroma【C1】________andshowoffitspersonality.Firms
《经合组织范本》第27条确定双边征管互助应满足的条件有【】
社会契约道德观
根据建设工程材料采购合同条款的规定,预付款支付应具备的条件包括()。
甲公司向乙公司购买水泵一台,为支付货款,签发了一张以自己为出票人、以乙公司为收款人、以M银行为承兑人、票面金额为30万元、到期日为2008年8月3日的银行承兑汇票,并交付给乙公司。甲公司和M银行均在该汇票上进行了签章。乙公司的财务人员A利用工作之便,将上
“民间户婚、田土、斗殴相争,一切小事,不许辄便告官,务要经由本管里甲、老人理断。若不经由者,不问虚实,先将告人杖断六十,仍发回里甲、老人理断。”
下列权限中,哪一个不是数据库的访问权限?
校园网内的一台计算机无法使用域名而只能使用IP地址访问某个外部服务器,造成这种情况的原因不可能是()。
Tocallsomeonebird-brainedinEnglishmeansyouthinkthatpersonissillyorstupid.Butwillthisdescriptionsoondisappear
A—contractfortransferoftechnicalknow-howB—technicaldocumentationC—medium-speedmarineengineD—
最新回复
(
0
)