首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(a,+∞)内有二阶导数,且f(a+1)=0,,,求证在(a,+∞)内至少有一点,使得f"(ε)=0.
设函数f(x)在(a,+∞)内有二阶导数,且f(a+1)=0,,,求证在(a,+∞)内至少有一点,使得f"(ε)=0.
admin
2022-03-14
108
问题
设函数f(x)在(a,+∞)内有二阶导数,且f(a+1)=0,
,
,求证在(a,+∞)内至少有一点,使得f"(ε)=0.
选项
答案
已知f(a+1)=0,若在(a+1,+∞)[*](a,+∞)内,f(x)≠0,则至少存在x
1
∈(a+1,+∞),使得f(x
1
)≠0. 不妨设f(x
1
)>0,由于f(a+1)=0,[*],又曲线y=f(x)在(a,+∞)内连续,则曲线上在点(x
1
,f(x
1
))左右曲线皆有下降接近零处。 在x
1
左,存在x
2
,满足当a+1<x
2
<x
1
时,有f(x
2
)<f(x
1
),在x
1
右,存在x
3
,满足当x
1
<x
3
<+∞时,有f(x
3
)<f(x
1
),于是拉格朗日中值定理: 存在ξ
1
∈(x
1
,x
2
),使得f’(ξ
1
)=[*] 存在ξ
2
∈(x
1
,x
3
),使得f’(ξ
2
)=[*] 由于f(x)二阶可导,所以f’(x)在[ξ
1
,ξ
2
]上连续,故存在ξ
3
∈(ξ
1
,ξ
2
),使得f’(ξ
3
)=0 补充定义f(a)=0,又知道f(a+1)=0,所以f(x)在[a,a+1]上满足罗尔定理条件。 于是存在ξ
4
∈(a,a+1),使得f’(ξ
4
)=0 因此,导函数f’(x)在区间[ξ
4
,ξ
3
]上仍满足罗尔定理条件,故存在ξ∈(ξ
4
,ξ
3
)[*](a,+∞),使得f"(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/sIR4777K
0
考研数学三
相关试题推荐
设an(x-1)n在x=-1处收敛,则此级数在x=2处().
设随机事件A与B互不相容,0<P(A)<1,0<P(B)<1,记X与Y的相关系数为p,则()
设z=x2+y2一2ln|x|一2ln|y|(x≠0,y≠0),则下列结论正确的是
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
累次积分可以写成
设z=f(x,y)在点(x0,y0)处可微,△z是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处()。
(88年)设随机变量X在区间(1,2)上服从均匀分布,试求随机变量Y=e2X的概率密度f(y).
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得fˊ(η)fˊ(ζ)=1.
已知二维随机变量(X,Y)的概率分布为又P{X=1}=0.5,且X与Y不相关.(Ⅰ)求未知参数a,b,c;(Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么?(Ⅲ)随机变量X+Y与X-Y是否相关,是否独立?
设二维随机变量(X,Y)的概率密度为求:协方差Cov(3X+Y,X一2Y).
随机试题
WhathavetheEuropeancountriesagreedonattheBrusselsSummit?
胆固醇不能转变成
A.肾结核B.尿道炎C.前列腺炎D.膀胱炎E.肾盂肾炎男性,30岁,1年来尿急、尿频伴会阴部不适,坠痛,近2个月来症状加重伴终末血尿()
患者人流术后一周.出现下腹疼痛、发热、腰痛、阴道分泌物浑浊等症状,白细胞增高.中性粒细胞增加,妇科检查子宫体压痛.稍大而软,双侧附件有包块,压痛明显。其诊断是
安全管理工作中消除隐患、防止事故发生、改善劳动条件的重要手段是()。
建设工程项目的技术风险类型不包括( )。
根据下面资料,作答下列问题。王老师上课时,小李同学指出他对某个问题的讲解有错误,王老师当即恼怒起来:“小李同学,算你厉害,老师不如你,以后的课就由你来上好了!”全班同学随老师一起嘲笑小李同学。从此以后,小李在课堂上即使发现问题也不主动讲了。教
中国提出建设“丝绸之路经济带”和“21世纪海上丝绸之路”(简称“一带一路”)的重大倡议,是扩大和深化对外开放的重大举措,也是实现与亚欧非及世界各国互利共赢的重大举措。“一带一路”的基本原则是()。
显示器是PC机的一种输出设备,它必须通过显示控制卡(简称显卡)与PC机相连。在下面有关PC机显卡的叙述中,哪一个是错误的?______
一间宿舍可住多个学生,则实体宿舍和学生之间的联系是()。
最新回复
(
0
)