首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A=.正交矩阵Q使得QTAQ是对角矩阵,并且Q的第1列为(1,2,1)T.求a和Q.
A=.正交矩阵Q使得QTAQ是对角矩阵,并且Q的第1列为(1,2,1)T.求a和Q.
admin
2018-11-20
68
问题
A=
.正交矩阵Q使得Q
T
AQ是对角矩阵,并且Q的第1列为
(1,2,1)
T
.求a和Q.
选项
答案
Q
-1
AQ=Q
T
AQ是对角矩阵,说明Q的列向量都是A的特征向量,于是(1,2,1)
T
也是A的特征向量. [*] (1,2,1)
T
和(2,5+a,4+2a)
T
相关,得a=一1,并且(1,2,1)
T
的特征值为2. [*] A的特征值为2,5,一4.下面来求它们的单位特征向量. [*]是属于2的单位特征向量. [*] 则(1,一1,1)
T
是属于5的特征向量,单位化得α
2
=[*](1,一1,1)
T
. [*] 则(1,0,一1)
T
是属于一4的特征向量,单位化得α
3
=[*](1,0,一1)
T
. 则Q=(α
1
,α
2
,α
3
).(不是唯一解,例如(α
1
,α
3
,α
2
),(α
1
,一α
2
,一α
3
),(α
1
,一α
3
,一α
2
)等也都适合要求.)
解析
转载请注明原文地址:https://kaotiyun.com/show/twW4777K
0
考研数学三
相关试题推荐
设二维非零向量α不是二阶方阵A的特征向量.若A2a+Aα一6α=0,求A的特征值,讨论A可否对角化;
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求|A*+2E|.
设矩阵若A有一个特征值为3,求a;
设有三个线性无关的特征向量,则a=________.
设四阶矩阵B满足BA一1=2AB+E,且A=,求矩阵B.
设,且AX+|A|E=A*+X,求X.
n阶矩阵A经过若干次初等变换化为矩阵B,则().
二次型f(x1,x2,x3)=x12+ax22+x32一4x1x2一8x1x3一4x2x3经过正交变换化为标准形5y12+by22一4y32,求:正交变换的矩阵Q.
设A是三阶实对称矩阵,且A2+2A=0,r(A)=2.当k为何值时,A+kE为正定矩阵?
随机试题
银翘散中配伍荆芥穗、淡豆豉的目的是()
在下面有关信息加密技术的论述中,不正确的是()。
美国向我国出口的主要是高附加值的劳动密集型产品。()
某公司与政府机关共同使用一栋共有土地使用权的建筑物。该建筑物占用土地面积2000平方米,建筑物面积10000平方米(公司与机关的占用比例为4比1),该公司所在市城镇土地使用税单位税额每平方米5元,该公司应纳城镇土地使用税( )元。
甲公司为从事石油化工及投资的大型企业。甲公司下属子公司乙公司于2010年在香港成功发行股票并上市。2013年9月,乙公司购入总部位于英国的丙公司4.2%的股份。经过与丙公司的接触,乙公司认为,全面收购丙公司符合其长远发展目标。丙公司在尼日利亚的全
Ateacherliststwenty"simplepresenttense"sentencesandasksstudentstodiscussandfindoutthegrammaticalstructures.Wh
如何培养学生的创造性思维?
历史上著名的“焚书坑儒”事件发生在()。
近些年,作为文化政策、资本扶植发展的重心,国产动画被寄予了极大期望。然而,动漫的土壤并不是随便撒些空壳烂籽就可以_________的。填入画横线部分最恰当的一项是:
使用VC++2010打开考生文件夹下modi1中的解决方案。此解决方案的项目中包含一个源程序文件modi1.c。在此程序中,函数fun的功能是:计算并输出k以内最大的10个能被13或17整除的自然数之和。k的值由主函数传入,若k的值为500,则函数的值为4
最新回复
(
0
)