首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题: (1)若AX=0的解都是BX=0的解,则r(A)≥r(B) (2)若r(A)≥r(B),则AX=0的解都是BX=0的解 (3)若AX=0与BX=0同解,则r(A)=r(B) (4)若
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题: (1)若AX=0的解都是BX=0的解,则r(A)≥r(B) (2)若r(A)≥r(B),则AX=0的解都是BX=0的解 (3)若AX=0与BX=0同解,则r(A)=r(B) (4)若
admin
2019-09-27
36
问题
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:
(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)
(2)若r(A)≥r(B),则AX=0的解都是BX=0的解
(3)若AX=0与BX=0同解,则r(A)=r(B)
(4)若r(A)=r(B),则AX=0与BX=0同解
以上命题正确的是( ).
选项
A、(1)(2)
B、(1)(3)
C、(2)(4)
D、(3)(4)
答案
B
解析
若方程组AX=0的解都是方程组BX=0的解,则n-r(A)≤n-r(B),从而r(A)≥r(B),(1)为正确的命题;显然(2)不正确;因为同解方程组系数矩阵的秩相等,但反之不对,所以(3)是正确的,(4)是错误的,选B.
转载请注明原文地址:https://kaotiyun.com/show/u1S4777K
0
考研数学一
相关试题推荐
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
不等式的解集(用区间表示)为[].
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
设A是三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1﹦-2α1-4α3,Aα2﹦α1﹢2α2﹢α3,Aα3﹦α1﹢3α3。(I)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使得P-1AP为对角阵。
设随机变量X和Y相互独立,且D(x)﹦2D(Y),则随机变量X﹢2Y与X-2Y的相关系数为______。
设总体X与Y都服从正态分布N(0,σ2),已知X1,X2,…,Xm与Y1,Y2,…,Yn均是来自正态总体X与Y的两个相互独立的简单随机样本,统计量服从Y﹦t(n)分布,则m与n应满足的关系为()
设二次型f(x1,x2,x3)﹦xTAx﹦ax12﹢6x22﹢3x32-4x1x2-8x1x3-4x2x3,其中-2是二次型矩阵A的一个特征值。(I)求a的值;(Ⅱ)试用正交变换将二次型f化为标准形,并写出所用的正交变换。
设A,B均为n阶矩阵,A可逆,且A与B相似,则下列命题中正确的个数为()①AB与BA相似;②A2与B2相似;③AT与BT相似;④A-1与B-1相似。
随机试题
含有两个氨基的氨基酸是
护理管理者的任务是()
欲使一种弱免疫原性的可溶性蛋白在人体诱导出高滴度的特异性抗体,有效的方法可能是
关于必需脂肪酸与非必需脂肪酸的正确叙述是
某材料自甲、乙两地采购,相关信息如下表所示,则其材料单价为()元/t。【2013年真题】
离港系统通过国际民航通信委员会()网关向行李分拣系统传输在机场办理登机手续旅客的行李数据。
关于作业疲劳的说法,正确的是()。
班级成员在服从班集体的正确决定和承担责任的前提下,参与班级管理的方式足()。
根据认识的发展规律,在认识的“熟知”与“真知”问题上的正确观点是()。
Toseeifhaircoloraffectsaperson’schancesofgettingajob,researchersatCaliforniaStateUniversityasked136colleges
最新回复
(
0
)