首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型为f﹦x12﹢2x22﹢6x32﹢2x1x2﹢2x1x3﹢6x2x3。 (I)用可逆线性变换化二次型为标准形,并求所用的变换矩阵; (Ⅱ)证明二次型对应的矩阵A为正定矩阵,并求可逆矩阵U,使得A﹦UTU。
设二次型为f﹦x12﹢2x22﹢6x32﹢2x1x2﹢2x1x3﹢6x2x3。 (I)用可逆线性变换化二次型为标准形,并求所用的变换矩阵; (Ⅱ)证明二次型对应的矩阵A为正定矩阵,并求可逆矩阵U,使得A﹦UTU。
admin
2019-01-22
57
问题
设二次型为f﹦x
1
2
﹢2x
2
2
﹢6x
3
2
﹢2x
1
x
2
﹢2x
1
x
3
﹢6x
2
x
3
。
(I)用可逆线性变换化二次型为标准形,并求所用的变换矩阵;
(Ⅱ)证明二次型对应的矩阵A为正定矩阵,并求可逆矩阵U,使得A﹦U
T
U。
选项
答案
(I)用配方法将二次型化为标准形 f﹦x
1
2
﹢2x
2
2
﹢6x
3
2
﹢2x
1
x
2
﹢2x
1
x
3
﹢6x
2
x
3
﹦(x
1
﹢x
2
﹢x
3
)
2
﹢x
2
2
﹢5x
3
2
﹢4x
2
x
3
﹦(x
1
﹢x
2
﹢x
3
)
2
﹢(x
2
﹢2x
3
)
2
﹢x
3
2
。 [*] 得f的标准形为f﹦y
1
2
﹢y
2
2
﹢y
3
2
,所用可逆线性变换为x﹦Cy,其中C﹦[*](|C|﹦1≠0)。 (Ⅱ)由(I)得,二次型的标准形为f﹦y
1
2
y
2
2
﹢y
3
2
,其系数全为正,所以二次型正定,即二次型对应的矩阵A为正定矩阵。 方法一:由(I)知 f﹦(x
1
﹢x
2
﹢x
3
)
2
﹢(x
2
﹢2x
3
)
2
﹢x
3
2
[*] 方法二:由题干得,二次型f﹦x
T
Ax对应的矩阵为A﹦[*] 由(I)知,f﹦x
T
Ax﹦y
T
C
T
ACy﹦y
T
y,所以C
T
AC﹦E,A﹦(C
-1
)
T
C
-1
﹦U
T
U,其中U﹦C
-1
。 [*] 本题考查二次型。二次型标准化的方法有:配方法和正交变换法。证明二次型对应的矩阵A正定的方法有:定义、顺序主子式全部大于0、正惯性指数为n、特征值均大于0等。考生可根据对上述知识点的掌握程度选择求解方法。
解析
转载请注明原文地址:https://kaotiyun.com/show/RfM4777K
0
考研数学一
相关试题推荐
设A是n阶非零矩阵,E是n阶单位矩阵,若A3=0,则().
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,求:(I)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(v).
设是正定矩阵,其中A,B分别是m,n阶矩阵.记(1)求PTDP.(2)证明B一CTA-1C正定.
二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.①求f(x1,x2,x3)的矩阵的特征值.②如果f(x1,x2,x3)的规范形为y12+y22,求a.
设随机变量序列X1,…,Xn,…相互独立,根据辛钦大数定律,当n→∞时依概率收敛于其数学期望,只要{Xn,n≥1}
曲线y=arctan渐近线的条数是
与直线,及直线都平行且经过坐标原点的平面方程是______.
计算曲面积分,其中∑为圆柱面x2+y2=R2界于z=0及z=H之间的部分,r为曲面上的点到原点的距离(H>0).
计算下列三重积分或将三重积分化成累次积分I=zdV,其中Ω:x2+y2+z2≤2,x2+y2≤z.
设直线L:绕y轴旋转一周所成的旋转曲面为∑.求由曲面∑及y=0,y=2所围成的几何体Ω的体积.
随机试题
A.D860B.格列喹酮C.格列本脲D.苯乙双胍E.氯磺丙脲磺脲类降糖药中,作用最强而快的是
脂质体的制备方法不包括()
累计凭证是在一定期间内根据多张相同的原始凭证累计而成。()
税款征收中的查验征收方式主要对生产不固定,账册不健全的单位适用。()
对基金信息披露质量的最低要求是()
依据采购方与供应商的紧密程序,可将供应商分为()供应商。
对企业而言,薪酬的功能包括()。
用中子轰击铀核时出现原子核裂变,并释放出新的______的现象,称核裂变反应。
2015年保险公司原保险保费收入24282.52亿元,同比增长20.00%,比上一年高2.51%,其中,产险业务原保险保费收入7994.97亿元,同比增长10.99%;寿险业务原保险保费收入13241.52亿元,同比增长21.46%;健康险业务原保险保费收
Musiccomesinmanyforms;mostcountrieshaveastyleoftheirown.【C1】______theturnofthecenturywhenjazz(爵士乐)wasborn,Am
最新回复
(
0
)