首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组Ax=0的通解为_______.
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组Ax=0的通解为_______.
admin
2019-05-19
48
问题
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组Ax=0的通解为_______.
选项
答案
k(1,1,…,1)
T
(k为任意常数).
解析
因基础解系含n-r(A)=n-(n-1)=1个向量,故Ax=0的任一非零解都可作为Ax=0的基础解系,由条件
a
ij
=0,i=1,…,n,知ξ=(1,1,…,1)
T
是Ax=0的非零解,故Ax=0的通解为x=kξ.
转载请注明原文地址:https://kaotiyun.com/show/u2J4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f’’(ξ)|≥|f(b)-f(a)|.
设(X,Y)~f(x,y)=(1)判断X,Y是否独立,说明理由;(2)判断X,Y是否不相关,说明理由;(3)求Z=X+Y的密度.
设总体X的密度函数为f(x)=(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量;(2)求D().
设(X,Y)的联合密度函数为f(x,y)=(1)求a;(2)求X,Y的边缘密度,并判断其独立性;(3)求fX|Y(X|Y).
设α是n维单位列向量,A=E-ααT.证明:r(A)<n.
对常数p,讨论幂级数的收敛域.
设随机变量X,Y独立同分布,且X~N(0,σ2),再设U=aX+by,V=aX-by,其中a,b为不相等的常数.求:(1)E(U),E(V),D(U),D(V),ρUV;(2)设U,V不相关,求常数a,b之间的关系.
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f(ξ)=3.
设z=f(x,y)在点(1,1)处可微,f(1,1)=1,f′1(1,1)=a,f′2(1,1)=b,又u=f[x,f(x,x)],求
设f(x)二阶可导,且证明:存在ξ∈(0,1),使得ξf"(ξ)+2f′(ξ)=0.
随机试题
无产阶级革命的发生归根结底是()
A.溴新斯的明B.硝酸毛果芸香碱C.硫酸阿托品D.氯化琥珀胆碱E.丁溴东莨菪碱
合同法律关系的(),是指法律关系主体的权利和义务所指向的对象。
深圳光明眼镜公司(4402913091)委托深圳圳旺国际贸易公司(4402911616)进口一批镜框材料,装载该货物的运输工具于2004年9月13日申报进境,次日由深圳巨龙报关公司向深圳海关申报。“经营单位”栏应填()。
下列关于季节性融资的说法,正确的有()。
从给出的几句话中找出没有语病的一句。()
《国家中长期教育改革和发展规划纲要(2010~2020年)》中提出,创新人才培养模式必须()
在窗体上画一个名称为Command1的命令按钮,然后编写如下程序:PrivateSubCommand1-Click()StaticXAmIntegerStaticYAsInteger
Duringthe1980s,unemploymentandunderemploymentinsomecountrieswasashighas90percent.Somecountriesdidnot【21】____
Americansbelievethatindividualsmustlearnto【B1】_______themselvesorrisklosingfreedom.Thismeansachievingbothfinanci
最新回复
(
0
)