首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)=. (I)讨论函数f(x)的奇偶性、单调性、极值; (Ⅱ)讨论曲线y=f(x)的凹凸性、拐点、渐近线,并根据(I).(Ⅱ)的讨论结果,画出函数y=f(x)的大致图形.
设y=f(x)=. (I)讨论函数f(x)的奇偶性、单调性、极值; (Ⅱ)讨论曲线y=f(x)的凹凸性、拐点、渐近线,并根据(I).(Ⅱ)的讨论结果,画出函数y=f(x)的大致图形.
admin
2018-12-21
34
问题
设y=f(x)=
.
(I)讨论函数f(x)的奇偶性、单调性、极值;
(Ⅱ)讨论曲线y=f(x)的凹凸性、拐点、渐近线,并根据(I).(Ⅱ)的讨论结果,画出函数y=f(x)的大致图形.
选项
答案
(I)因为二次式x
2
±x﹢1的判别式(±1)
2
-4=-3﹤0,所以x
2
±x﹢1>0恒成立,f(x)的定义域为(-∞,﹢∞). 又f(x)=-f(-x),所以f(x)为奇函数. [*] f
’
(x)的分子中两项分别记为a,b,a﹥0,b﹥0,考虑[*] 故0﹤a﹤b.所以当x>[*]时,仍有f
’
(x)﹤0,从而当0≤x﹤﹢∞时,f
’
(x)<0.又f(x)为奇函数, 故当-∞﹤x﹤0时,f
’
(x)<0.所以当x∈(-∞,﹢∞)时,均有f
’
(x)<0,即f(x)在(-∞,﹢∞)上严格单调减少,f(x)无极值. (Ⅱ)[*] 所以当-∞﹤x﹤0时,曲线y=f(x)是凸的,当0﹤x﹤﹢∞时,曲线是凹的.点(0,f(0))为拐点.易知无铅直渐近线.考虑水平渐近线: [*] 所以沿x→﹢∞方向有水平渐近线y=-1.由于f(x)为奇函数,所以沿x→-∞方向有一条水平渐近线y=1. 大致图形如下 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/uAj4777K
0
考研数学二
相关试题推荐
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
(1997年)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
(2003年)设函数y=y(χ)在(-∞,+∞)内具有二阶导数,且y′≠0,χ=χ(y)是y=y(χ)的反函数.(1)试将χ=χ(y)所满足的微分方程=0变换为y=y(χ)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0
(1991年)若连续函数f(χ)满足关系式f(χ)=∫02χf()dt+ln2则f(χ)等于
(1996年)设函数f(χ)在区间(-δ,δ)内有定义,若当χ∈(-δ,δ)时,恒有|f(χ)|≤χ2,则χ=0必是f(χ)
(2012年)已知函数f(χ)=,记a=f(χ).(Ⅰ)求a的值;(Ⅱ)若当χ→0时,f(χ)-a与χk是同阶无穷小,求常数k的值.
求函数z=x2+y2+2x+y在区域D:x2+y2≤1上的最大值与最小值.
已知四元二个方程的齐次线性方程组的通解为X=k1[1,0,2,3]T+k2[0,1,一l,1]T,求原方程组.
设二次型f(χ1,χ2,χ3)=XTAX=aχ12+2χ22-2χ32+2bχ1χ3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为-12.(1)求a、b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和
随机试题
正常操作的逆流吸收塔中,如吸收剂入塔量减少,会造成实际液气比小于原定的最小液气比,从而将导致吸收过程无法进行。
微型计算机硬件系统中最核心的部件是
A.普通菌毛B.荚膜C.芽胞D.鞭毛E.质粒与细菌抗吞噬作用有关的结构是
A.氟化泡沫B.含氟牙膏C.含氟涂料D.氟化饮水E.含氟凝胶可与氯己定配合使用的是
小儿时期最常见的两脏疾病是( )
菩萨蛮.北固题壁郭麟青天欲放江流去,青山欲截江流住。侬也替江愁,山山不到头。片帆如鸟落,江住侬船泊。毕竟笑山孤,能留侬住无?词的上阕说“依也替江愁”,下阕说“毕竟笑山孤”,“愁”与“笑”是否矛盾?为什么?
《治安管理处罚法》对一人实施数行为的责任,遵循的是()。
央视发起“谁是家里顶梁柱”的调查,那么一个国家,一个民族,更需要顶梁柱,那谁称得起国家顶梁柱?请谈谈你对顶梁柱的看法。
公安机关人民警察内务建设的基本方针是从严治警和()。
备注型字段的数据用来存放_________。
最新回复
(
0
)