首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)=. (I)讨论函数f(x)的奇偶性、单调性、极值; (Ⅱ)讨论曲线y=f(x)的凹凸性、拐点、渐近线,并根据(I).(Ⅱ)的讨论结果,画出函数y=f(x)的大致图形.
设y=f(x)=. (I)讨论函数f(x)的奇偶性、单调性、极值; (Ⅱ)讨论曲线y=f(x)的凹凸性、拐点、渐近线,并根据(I).(Ⅱ)的讨论结果,画出函数y=f(x)的大致图形.
admin
2018-12-21
72
问题
设y=f(x)=
.
(I)讨论函数f(x)的奇偶性、单调性、极值;
(Ⅱ)讨论曲线y=f(x)的凹凸性、拐点、渐近线,并根据(I).(Ⅱ)的讨论结果,画出函数y=f(x)的大致图形.
选项
答案
(I)因为二次式x
2
±x﹢1的判别式(±1)
2
-4=-3﹤0,所以x
2
±x﹢1>0恒成立,f(x)的定义域为(-∞,﹢∞). 又f(x)=-f(-x),所以f(x)为奇函数. [*] f
’
(x)的分子中两项分别记为a,b,a﹥0,b﹥0,考虑[*] 故0﹤a﹤b.所以当x>[*]时,仍有f
’
(x)﹤0,从而当0≤x﹤﹢∞时,f
’
(x)<0.又f(x)为奇函数, 故当-∞﹤x﹤0时,f
’
(x)<0.所以当x∈(-∞,﹢∞)时,均有f
’
(x)<0,即f(x)在(-∞,﹢∞)上严格单调减少,f(x)无极值. (Ⅱ)[*] 所以当-∞﹤x﹤0时,曲线y=f(x)是凸的,当0﹤x﹤﹢∞时,曲线是凹的.点(0,f(0))为拐点.易知无铅直渐近线.考虑水平渐近线: [*] 所以沿x→﹢∞方向有水平渐近线y=-1.由于f(x)为奇函数,所以沿x→-∞方向有一条水平渐近线y=1. 大致图形如下 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/uAj4777K
0
考研数学二
相关试题推荐
(2011年)设向量组α1=(1,0,1)T,α2(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,
(2010年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是【】
(1998年)设有曲线y=,过原点作其切线,求由此曲线、切线及χ轴围成的平面图形绕χ轴旋转一周所得旋转体的表面积.
(1987年)设I=tf(tχ)dχ,其中f(χ)连续,S>0,t>0,则I的值【】
求内接于椭球面=1的长方体的最大体积.
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f"(ξ)=3.
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
已知A=,求A的特征值、特征向量,并判断A能否相似对角化,说明理由.
已知ξ=[1,1,一1]T是矩阵A=的一个特征向量.(1)确定参数a,b及ξ对应的特征值λ;(2)A是否相似于对角阵,说明理由.
[*]所以原式[*]
随机试题
驾驶机动车遇到牲畜跑向路中,要预防赶牲畜的人突然跑向路中。
夫乐者乐也,人情之所不能免也。乐必发诸声音,形于动静,人道也。声音动静,性术之变,尽于此矣。故人不能无乐,乐不能无形。形而不为道,不能无乱。先王恶其乱,故制《雅》《颂》之声以道之,使其声足以乐而不流,使其文足以纶而不息,使其曲直繁省廉肉①节奏,足
糖皮质激素抗毒作用的机制是
张某为支付货款向李某开具了一张票面金额为10万的支票。李某担心张某的信用,于是张某让其朋友陈某在该支票上写上了“保证”字样,并签上了陈某的名字。李某接收该支票后,背书转让给了安某。下列哪些选项是正确的?()
下列事项不适用《行政许可法》的有:()
新生产的一批加碘加锌营养袋盐,其平均重量为1000g,标准差为5g。若公差T=1000±5g,则该批袋盐合格品率为()。
正常情况下,体内维生素C代谢后主要从()排出。
以下不属于行政立法主体的是()。
下列对智力的说法错误的是()
Foraquarterofacentury,surveysofreadinghabitsbytheNationalfortheArts(NEA),afederally-fundedbody,havebeenfavo
最新回复
(
0
)