首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设C1和C2是两个任意常数,则函数y=ex(C1cos2x+C2sin2x)+sinx是二阶常系数线性微分方程( )的通解.
设C1和C2是两个任意常数,则函数y=ex(C1cos2x+C2sin2x)+sinx是二阶常系数线性微分方程( )的通解.
admin
2018-06-14
55
问题
设C
1
和C
2
是两个任意常数,则函数y=e
x
(C
1
cos2x+C
2
sin2x)+sinx是二阶常系数线性微分方程( )的通解.
选项
A、y"一2y’+5y=4cosx一2sinx
B、y"一2y’+5y=4sinx一2cosx
C、y"一5y’+2y=4cosx一2sinx
D、y"一5y’+2y=4sinx一2cosx
答案
B
解析
由二阶常系数线性微分方程通解的结构知,e
x
cos2x与e
2
sin2x是二阶常系数齐次线性微分方程y"+ay’+by=0两个线性无关的特解.从而特征方程λ
2
+aλ+b=0的两个特征根应分别是λ
1
=1+2i,λ
2
=1—2i,由此可得λ
2
aλ+b=(λ一1—2i)(λ一1+2i)=(λ—1)
2
一(2i)
2
=λ
2
—2λ+1+4=λ—2λ+5,即a=一2,b=5.
由二阶常系数线性微分方程通解的结构又知sinx应是非齐次方程y"一2y’+5y=f(x)的一个特解,故f(x)=(sinx)"一2(sinx)’+5sinx=4sinx一2cosx.
综合即得所求方程为y"一2y’+5y=4sinx一2cosx.应选B.
转载请注明原文地址:https://kaotiyun.com/show/uBW4777K
0
考研数学三
相关试题推荐
设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数,证明:不等式
假设有四张同样卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有a1,a2,a3.现在随意抽取一张卡片,令Ak={卡片上印有ak}.证明:事件A1,A2,A3两两独立但不相互独立.
设X1,X2,Xn是来自总体N(0,σ2)的简单随机样本,记U=X1+X2与V=X2+X3,则(U,V)的概率密度为_________.
设A是n阶实矩阵,证明:tr(AAT)=0的充分必要条件是A=O.
设X1,X2,…,Xn独立同分布,X1的取值有四种可能,其概率分布分别为:p1=1-θ,p2=θ-θ2,p3=θ2-θ3,p4=θ3,记Nj为X1,X2,…,Xn中出现各种可能的结果的次数,N1+N2+N3+N4=n.确定a1,a2,a3,a4使为θ
设X1,X2,…,Xn为总体X的一个样本,设EX=μ,DX=σ2,试确定常数C,使为μ2的无偏估计.
设A=(1)计算A2,并将A2用A和E表出;(2)设A是二阶方阵,当k>2时,证明:Ak=O的充分必要条件为A2=O.
设随机变量X的概率密度为求X的分布函数.
设A是m×n矩阵,证明:存在非零的m×s矩阵B,使得AB=O的充要条件是r(A)<n.
随机试题
与乌头相反的药有
背景资料某高速公路项目,路面面层为沥青混凝土,基层为级配碎石,项目经理部决心精心组织、科学施工,搞好现场技术质量管理,做了包括如下环节的工作:——项目经理部由总工程师组织进行了技术交底;——为真正落实公司的现场技术管理制度制定了执行细则,其中,为避免
个人抵押授信贷款的贷后检查手段包括()
在进行财务分配时,支付给债权人的利息和支付给股东的股利在财务处理上是不一样的,支付给债权人的利息属于()。
(1)立案侦查(2)翻墙入室(3)撬开金库(4)擒拿罪犯(5)盗走现金
若某完全二叉树的结点个数为100,则第60个结点的度为().
在认识的本质问题上,17世纪牛顿提出“粒子说”,17世纪末惠更斯提出“波动说”,两种学说在科学史上争论了几个世纪。直到1922年,爱因斯坦把两者统一起来,建立“波粒二象性”的学说,这个矛盾才得以解决。这一历史事件所包含的哲理是
Plato’sRepublichasbeenthesourceofgreatconsternation,especiallyinliterarycircles,foritsattackonthepoets.Socrat
Marysaidtome,"HadIseenyourbag,I______ittoyou."
A、Hefeelsunsympathetic.B、Hefeelsit’sapity.C、Hefeelsit’sunfair.D、Hefeelsglad.A
最新回复
(
0
)