首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设C1和C2是两个任意常数,则函数y=ex(C1cos2x+C2sin2x)+sinx是二阶常系数线性微分方程( )的通解.
设C1和C2是两个任意常数,则函数y=ex(C1cos2x+C2sin2x)+sinx是二阶常系数线性微分方程( )的通解.
admin
2018-06-14
61
问题
设C
1
和C
2
是两个任意常数,则函数y=e
x
(C
1
cos2x+C
2
sin2x)+sinx是二阶常系数线性微分方程( )的通解.
选项
A、y"一2y’+5y=4cosx一2sinx
B、y"一2y’+5y=4sinx一2cosx
C、y"一5y’+2y=4cosx一2sinx
D、y"一5y’+2y=4sinx一2cosx
答案
B
解析
由二阶常系数线性微分方程通解的结构知,e
x
cos2x与e
2
sin2x是二阶常系数齐次线性微分方程y"+ay’+by=0两个线性无关的特解.从而特征方程λ
2
+aλ+b=0的两个特征根应分别是λ
1
=1+2i,λ
2
=1—2i,由此可得λ
2
aλ+b=(λ一1—2i)(λ一1+2i)=(λ—1)
2
一(2i)
2
=λ
2
—2λ+1+4=λ—2λ+5,即a=一2,b=5.
由二阶常系数线性微分方程通解的结构又知sinx应是非齐次方程y"一2y’+5y=f(x)的一个特解,故f(x)=(sinx)"一2(sinx)’+5sinx=4sinx一2cosx.
综合即得所求方程为y"一2y’+5y=4sinx一2cosx.应选B.
转载请注明原文地址:https://kaotiyun.com/show/uBW4777K
0
考研数学三
相关试题推荐
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:(1)试当n=1500时求舍位误差之和的绝对值大于15的概率;(2)估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据
假设G={(x,y)|x2+y2≤r2}是以原点为圆心,半径为r的圆形区域,而随机变量X和Y的联合分布是在圆G上的均匀分布.试确定随机变量X和Y的独立性和相关性.
假设有四张同样卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有a1,a2,a3.现在随意抽取一张卡片,令Ak={卡片上印有ak}.证明:事件A1,A2,A3两两独立但不相互独立.
证明:方阵A与所有同阶对角阵可交换的充分必要条件是A是对角阵.
设X1,X2,…,Xn是总体N(μ,σ2)的样本,是样本均值,记则服从自由度为n-1的t分布的随机变量是()
设随机变量X的概率密度为求y=sinX的概率密度.
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:(1)使用的最初150小时内,至少有两个电子管被烧坏的概率;(2)在使用的最初150小时内烧坏的电子管数y的分布律;(3)Y的分布函数.
已知线性方程组(Ⅰ)线性方程组(Ⅱ)的基础解系ξ1=[-3,7,2,0]T,ξ2=[-1,-2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
随机试题
感受疼痛存在的神经中枢是
常用菌斑显示剂
病人长期仰卧位时,哪些部位易发生压疮()。
A.ETECB.EPECC.EIECD.EHECE.EAggEC引起霍乱样肠毒素腹泻的是
2018年3月2日。苏某为了庆祝自己和其他作者合著的新书大卖,邀请其他作者一起前往海河大饭店聚餐。前往饭店前,苏某在海鲜市场张某处购买了一只大海螺。后交给海河大饭店加工,厨师何某剥开发现海螺里有一颗橙色的椭圆形大珍珠。请问:珍珠归谁所有?(
下列关于GDP的描述,错误的是()。
《物权法》规定,建筑区划内的()事项需由业主共同决定。
课堂教学活动是教师职业的最基本的活动。()
A、 B、 C、 D、 A左侧从第一个图形开始到第三个图形沿三个角所画内部圆弧不断扩大。依此规律,正确答案为A。
Ifyourwaistisexpanding,so(31)yourchancesofcomingdownwithdiabetes,evenifyouthinkyou’re(32)youngtogetsick.
最新回复
(
0
)