首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
admin
2021-07-27
30
问题
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
选项
答案
由AA
T
=E有|A|
2
=1,因此,正交矩阵的行列式为1或-1.由|A|+|B|=0有|A|.|B|=-1,也有|A
T
|.|B
T
|=-1.再考虑到|A
T
(A+B)B
T
|=|A
T
+B
T
|=|A+B|,所以-|A+B|=|A+B|,|A+B|=0.故A+B不可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/uGy4777K
0
考研数学二
相关试题推荐
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于χ轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=χ2,C1的方程是y=χ2,求曲线C2的方程.
当x>0,y>0,z>0时,求u(x,y,z)=lnx+lny+3lnz在球面x2+y2+z2=5R2上的最大值,并证明abc3≤(其中a>0,b>0,c>0)
现有四个向量组①(1,2,3)T,(3,一1,5)T,(0,4,一2)T,(1,3,0)T;②(a,1,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,1,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
设二次型f(x1,x2,x3)=XTAX,已知r(A)=2,并且A满足A2-2A=0.则下列各标准二次型(1)2y12+2y22.(2)2y12.(3)2y12+2y32.(4)2y22+2y32.中可用正交变换化为f的是(
下列条件不能保证n阶实对称阵A正定的是()
设矩阵,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为==(一1,一1,1)T,求a,b,c及λ0的值。
设证明:A=E+B可逆,并求A-1.
写出下列二次型的矩阵:
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式|α1,α2,α3,β1+7.β2|等于()
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A的其他特征值与特征向量。
随机试题
A.窦房结B.心房结C.房室交界D.浦肯野纤维E.心室肌自律性最高的是【】
脑出血最常见的发病部位是( )。
A.制霉菌素B.联苯苄唑C.环吡酮胺D.阿莫罗芬E.萘替芬属于唑类抗真菌药的是()。
小儿生长发育的连续性和阶段性规律中,以下哪项是错误的( )。
(2005)图1.5—1所示电路原已稳定,当t=0时断开开关S,则uC1(0+)为()。
国有独资企业、国有独资公司的下列行为,可以不经履行出资人职责的机构同意的是()。
很多艺术家在世的时候,其作品不被当时的社会所认可,直到他们去世很久,其艺术作品才被高度重视,在具备极高商业价值的同时,对艺术领域的拓展也具有重要意义。从上述论断可以推断出哪项结论?
Intheprivacyofourminds,wealltalktoourselves—aninnermonologuethatseemratherpointless.Asonescientificpaperon
Thehousewasveryquiet,______asitwasonthesideofamountain.
Theconceptofobtainingfreshwaterfromicebergsthataretowedtopopulatedareasandaridregionsoftheworldwasoncetrea
最新回复
(
0
)