首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数z=x2+y2+2x+y在区域D={(x,y)|x2+y2≤1)上的最大值与最小值.
求函数z=x2+y2+2x+y在区域D={(x,y)|x2+y2≤1)上的最大值与最小值.
admin
2018-08-23
35
问题
求函数z=x
2
+y
2
+2x+y在区域D={(x,y)|x
2
+y
2
≤1)上的最大值与最小值.
选项
答案
由于x
2
+y
2
≤1是有界闭区域,z=x
2
+y
2
+2x+y在该区域上连续,因此一定能取到最大值与最小值. ①解方程组[*]得[*] 由于[*]不在区域D内,舍去. ②函数在区域内部无偏导数不存在的点. ③再求函数在边界上的最大值与最小值点,即求z=x
2
+y
2
+2x+y满足约束条件x
2
+y
2
=1的条件极值点.此时z=1+2x+y. 用拉格朗日乘数法,作拉格朗日函数L(x,y,λ)=1+2x+y+λ(x
2
+y
2
一1), 解方程组[*]得[*]或[*] 所有三类最值怀疑点仅有两个,由于[*]所以最小值[*]最大值[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/uPj4777K
0
考研数学二
相关试题推荐
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足
设4元齐次方程组(I)为且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,a2=(一1,2,4,a+8)T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
设α1,α2……αn是n维向量组,证明α1,α2……αn线性无关的充分必要条件是任何一个n维向量都可被它们线性表示.
设函数f(x)在区间[0,+∞)上连续且单调增加,证明g(x)=在[0,+∞)上也单调增加.
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:(1)至少存在一点ξ∈(0,1),使得f(ξ)=1—ξ;(2)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
设函数f(x)在[0,2]上连续,在(0,2)内可导,且f(0)=1,f(1)=0,f(2)=3,证明至少存在一点ξ,使得f’(ξ)=0.
D是圆周x2+y2=Rx所围成的闭区域,则=___________.
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式.
设f(x)在[a,b]上有连续的导数,证明
设z=esinxy,则dz=_______.
随机试题
计划工作主要包括的内容有()
骨髓穿刺术的目的是
以下与雷尼替丁性质不相符的描述是
“热因热用”属于
患者,男,56岁。喘咳气急,胸部胀闷,不得卧,痰稀白量多,恶寒发热,无汗,舌苔薄白,脉浮紧。其治疗应首选()
( )的中心任务是利用合同的正当手段防范风险、维护自身的正当利益,并获取尽可能多的利润。
一把手如何赢得班子成员的信赖?
max{xy,1}dxdy,其中D={(x,y)|0≤x≤2,0≤y≤2}.
Computer systems consist of two very different types of elements: Hardware, which includes all the physical things that can be t
A、At6:00.B、At6:15.C、At6:30.D、At6:45.B本题的解题关键在于听清楚不同时间之间的关系,做简单记录并进行加减。这个对话中,男土说:“你6:15离开办公室好吗?那样的话,我6:30就接着你了,很明显,女士6:15
最新回复
(
0
)