首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C均是3阶矩阵,满足AB=2B,CAT=2C其中 证明:对任何3维向量ξ,A100ξ与ξ必线性相关.
设A,B,C均是3阶矩阵,满足AB=2B,CAT=2C其中 证明:对任何3维向量ξ,A100ξ与ξ必线性相关.
admin
2021-07-27
54
问题
设A,B,C均是3阶矩阵,满足AB=2B,CA
T
=2C其中
证明:对任何3维向量ξ,A
100
ξ与ξ必线性相关.
选项
答案
因Aβ
i
=-2β
i
(i=1,2),故A
100
β
i
=(-2)
100
β
i
=2
100
β
i
(i=1,2).因Aα
1
=2α
1
,故A
100
α
1
=2
100
α
1
.对任意的3维向量ξ,因β
1
,β
2
,α
1
线性无关,ξ可由β
1
,β
2
,α
1
线性表示,且表示法唯一.设ξ=μ
1
β
1
+μ
2
β
2
+μ
3
α
1
,则A
100
ξ=A
100
(μ
1
β
1
+μ
2
β
2
+μ
3
α
1
)=μ
1
A
100
β
1
+μ
2
A
100
β
2
+μ
3
A
100
α
1
=μ
1
2
100
β
1
+μ
2
2
100
β
2
+μ
3
2
100
α
1
=2
100
(μ
1
β
1
+μ
2
β
2
+μ
3
α
1
)=2
100
ξ.得证A
100
ξ和ξ成比例,A
100
ξ和ξ线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/uQy4777K
0
考研数学二
相关试题推荐
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。求AB一1。
设函数f(χ)在[0,π]上连续,且∫0πf(χ)sinχdχ=0∫0πf(χ)cosχdχ,=0.证明:在(0,π)内f(χ)至少有两个零点.
已知矩阵A相似于矩阵B=则秩(A-2E)与秩(A-E)之和等于【】
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是()。
设A,B均为n阶正定矩阵,下列各矩阵中不一定是正定矩阵的是()
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积∫0axf’(x)dx等于()
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
设A是m×n矩阵,AT是A的转置,若η1,η2,…,ηt为方程组ATx=0的基础解系,则r(A)=()
问λ为何值时,线性方程组有解,并求出解的一般形式.
随机试题
阅读《宝黛吵架》中的一段文字,然后回答下列小题。谁知这个话传到宝玉黛玉二人耳内,他二人竟从来没有听见过“不是冤家不聚头”的这句俗话儿,如今忽然得了这句话,好似参禅的一般,都低头细嚼这句话的滋味儿,不觉的潸然泪下。虽然不曾见面,却一个在潇湘馆临风洒泪
蛋白质溶液的稳定因素是
女,63岁,脑卒中后右侧偏瘫就诊康复科,体格检查:神志清楚,言语清晰,左侧肢体活动自如。右侧上下肚肌张力增高,被动活动右上肢,在关节活动范围后50%范围内出现突然卡住,然后在关节活动范围的后50%均呈现最小的阻力;被动活动左、右下肢,在关节活动范围之末时出
能明显提高高密度脂蛋白HDL的药物是
某妇女,35岁,妊娠42周,临产10小时,检查:胎心音120次/分,宫口3cm,有水囊感,S=0,B超双顶径9cm,羊水深度2.5cm,其处理以下列哪项为最佳
建筑工地上用以拌制混合砂浆的石灰膏必须经过一定时间的陈伏,这是为了消除()的不利影响。
民事法律关系的终止,是指某类民事法律关系主体之间的权利义务不复存在,彼此丧失了( )。法律关系内容变更中,一方的权利增加,也就意味着另一方的( )。
下列物品不属于民用危险品的是()。
根据以下资料,回答以下问题。2012年1~8月,北京市开发区累计完成招商项目2730个,比上年同期增长21.5%:项目总投资,597.5亿元,同比下降13.4%;企业注册资本435.8亿元,同比下降7.7%;合同外资金额10.3亿美元,同比下降3
计算机软件可划分为系统软件和应用软件两大类,以下哪个软件系统不属于系统软件?
最新回复
(
0
)