首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt. (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt. (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
admin
2014-11-26
49
问题
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫
-a
a
|x-t|f(t)dt.
(Ⅰ)证明:F’(x)单调增加.
(Ⅱ)当x取何值时,F(x)取最小值?
(Ⅲ)当F(x)的最小值为f(a)一a
2
一1时,求函数f(x).
选项
答案
(Ⅰ)F(x)=∫
-a
a
|x-t|f(t)dt=∫
-a
x
(x—t)f(t)dt+∫
x
a
(t一x)f(t)dt=x∫
-a
x
f(t)dt-∫
-a
a
tf(t)dt+∫
x
a
tf(t)dt-x∫
x
a
f(t)dt=x∫
-a
x
f(t)dt-∫
-a
a
tf(t)dt-∫
a
x
tf(t)dt+x∫
a
x
f(t)dt F’(x)=∫
-a
x
f(t)dt+xf(x)一xf(x)一xf(x)+∫
a
x
f(t)dt+xf(x)=∫
a
x
f(t)dt—∫
t
a
f(t)dt 因为F"(x)=2f(x)>0,所以F’(x)为单调增加的函数. (Ⅱ)因为F’(0)=∫
-a
0
f(x)dx—∫
0
a
∫(x)dx且f(x)为偶函数,所以F’(0)=0,又因为F"(0)>0,所以x=0为F(x)的唯一极小点,也为最小点.故最小值为F(0)=∫
-a
a
|t|f(t)dt=2∫
0
a
tf(t)dt. (Ⅲ)由2∫
0
a
tf(t)dt=f(a)一a
2
一1两边求导得 2af(a)=f’(a)-2a,于是f’(x)一2xf(x)=2x,解得f(x)=[∫2xe
∫-2xdx
dx+C]e
-∫-2xdx
=[*]一1,在2∫
0
a
tf(t)dt=f(a)一a
2
一1中令a=0得f(0)=1,则C=2,于是f(x)=[*]一1.
解析
转载请注明原文地址:https://kaotiyun.com/show/ue54777K
0
考研数学一
相关试题推荐
设求方程组Ax=b的全部解.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T是方程组Ax=0的两个解.求A的特征值和对应的特征向量;
设A,B,C,D为n阶矩阵,若ABCD=E,证明:BCDA=CDAB=E.
设判断A是否可逆;若可逆,求A-1;
设E是n阶单位矩阵,E+A是n阶可逆矩阵,则下列关系式中不恒成立的是().
设F(u,v)可微,y=y(x)由方程F[xex+y,f(xy)]=x2+y2所确定,其中f(x)是连续函数且满足关系式∫1xyf(t)dt=x∫1yf(t)dt+y∫1xf(t)dt,x,y>0,又f(1)=1,求:.
设f(x)是以2π为周期的二阶可导函数,满足关系式f(x)+2f’(x+π)=sinx,求f(x).
设f(x)在x=0)处连续,且则曲线y=f(x)在点(0,f(0))处的切线方程为________。
设y=χ3+3aχ2+3bχ+c在χ=-1处取最大值,又(0,3)为曲线的拐点,则().
设A从原点出发,以固定速度v0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度v1朝A追去,求B的轨迹方程。
随机试题
患者,男,46岁。血吸虫肝硬化病史15年,1小时前突然呕吐鲜血约1000ml急诊入院。查体:面色苍白,脉搏细弱。血压90/56mmHg,心率110次/分。上腹轻压痛,未触及肿块,肠鸣音亢进,无移动性浊音。行补液、止血、抗休克治疗的同时,拟行三腔二囊管压迫止
惊悸、怔忡的病因不包括
《唐律疏议》规定“一准乎礼”,通过引经决狱、引礼入律的方式,将儒家道德思想贯彻到立法、司法、守法的整个过程中。从法与道德的角度来看,下列说法中错误的是哪一项?
隧道施工方法中,属于山岭隧道施工方法的是()。
商业银行从事代客境外理财的,应当保存资金汇出、汇入、兑换、收汇、付汇和资金往来记录等相关资料,保存时间应当不少于()。
有关车辆管理注意事项的叙述中,错误的是()。
0,4,16,48,128,()
阅读下面的文字,完成下列各题。2000年,南美洲秘鲁海域的海水比往年同期变暖了。2001年,北美洲的加拿大等国的食品价格比往年上涨了许多。这两件事之间有什么联系吗?如有联系,这种联系又说明了什么问题呢?在秘鲁海域,每年五月初到九月底,通常情
Inthispart,youareaskedtowriteanessaybasedonthefollowingchart.Inyourwriting,youshould1)interpretthecha
在Windows中运行(29)命令后得到如下图所示的结果,该命令的作用是(30)。
最新回复
(
0
)