首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt. (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt. (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
admin
2014-11-26
93
问题
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫
-a
a
|x-t|f(t)dt.
(Ⅰ)证明:F’(x)单调增加.
(Ⅱ)当x取何值时,F(x)取最小值?
(Ⅲ)当F(x)的最小值为f(a)一a
2
一1时,求函数f(x).
选项
答案
(Ⅰ)F(x)=∫
-a
a
|x-t|f(t)dt=∫
-a
x
(x—t)f(t)dt+∫
x
a
(t一x)f(t)dt=x∫
-a
x
f(t)dt-∫
-a
a
tf(t)dt+∫
x
a
tf(t)dt-x∫
x
a
f(t)dt=x∫
-a
x
f(t)dt-∫
-a
a
tf(t)dt-∫
a
x
tf(t)dt+x∫
a
x
f(t)dt F’(x)=∫
-a
x
f(t)dt+xf(x)一xf(x)一xf(x)+∫
a
x
f(t)dt+xf(x)=∫
a
x
f(t)dt—∫
t
a
f(t)dt 因为F"(x)=2f(x)>0,所以F’(x)为单调增加的函数. (Ⅱ)因为F’(0)=∫
-a
0
f(x)dx—∫
0
a
∫(x)dx且f(x)为偶函数,所以F’(0)=0,又因为F"(0)>0,所以x=0为F(x)的唯一极小点,也为最小点.故最小值为F(0)=∫
-a
a
|t|f(t)dt=2∫
0
a
tf(t)dt. (Ⅲ)由2∫
0
a
tf(t)dt=f(a)一a
2
一1两边求导得 2af(a)=f’(a)-2a,于是f’(x)一2xf(x)=2x,解得f(x)=[∫2xe
∫-2xdx
dx+C]e
-∫-2xdx
=[*]一1,在2∫
0
a
tf(t)dt=f(a)一a
2
一1中令a=0得f(0)=1,则C=2,于是f(x)=[*]一1.
解析
转载请注明原文地址:https://kaotiyun.com/show/ue54777K
0
考研数学一
相关试题推荐
设A,B,C均是3阶矩阵,满足AB=2B,CAT=2C其中证明:对任何3维向量ξ,A100ξ与ξ必线性相关.
已知齐次线性方程组(Ⅰ)为齐次线性方程组(Ⅱ)的基础解系为ξ1=[-1,1,2,4]T,ξ2=[1,0,1,1]T.求方程组(Ⅰ)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(Ⅰ),(Ⅱ)的基础解系线性表示.
设ξ1=[1,-2,3,2]T,ξ2=[2,0,5,-2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是().
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系式AB=O.证明:若η是齐次线性方程组Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
设已知r(A)=2,求x,y的值.
已知函数f(x,y)在点(0,0)的某个邻域内连续,且33=一2,则().
求微分方程y”+2y’+y=xex的通解.
证明:连续函数取绝对值后函数仍保持连续性,并举例说明可导函数取绝对值不一定保持可导性.
已知A=,求A的特征值、特征向量,并判断A能否相似对角化,说明理由.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终飞向飞机,且速度大小为2v.导弹运行方程。
随机试题
200ml新鲜冰冻血浆制备的冷沉淀抽检Ⅷ因子含量的质量标准为
请说明口腔给药的特点。
治疗心悸,应首选()
在药品生产企业、药品经营企业和医疗机构,下列人员不得从事直接接触药品的工作()
铅垂振动台的运动规律y=asinωt。图上点0,1,2各为台的平衡位置。振动最高点与最低点。台上颗粒重W。设颗粒与台面永不脱离,则振动台在这三个位置作用于颗粒的约束力FN大小的关系为:
税务检查中,税务机关不可进行检查的场所是()。
“教育既有培养创造精神的力量,也有压抑创造精神的力量,甚至有的教育还在摧残儿童”这说明()。
下列著名风景区属于喀斯特地形的是()。
矩阵的三个特征值分别为_______.
以下不构成无限循环的语句或语句组是
最新回复
(
0
)