首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt. (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt. (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
admin
2014-11-26
84
问题
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫
-a
a
|x-t|f(t)dt.
(Ⅰ)证明:F’(x)单调增加.
(Ⅱ)当x取何值时,F(x)取最小值?
(Ⅲ)当F(x)的最小值为f(a)一a
2
一1时,求函数f(x).
选项
答案
(Ⅰ)F(x)=∫
-a
a
|x-t|f(t)dt=∫
-a
x
(x—t)f(t)dt+∫
x
a
(t一x)f(t)dt=x∫
-a
x
f(t)dt-∫
-a
a
tf(t)dt+∫
x
a
tf(t)dt-x∫
x
a
f(t)dt=x∫
-a
x
f(t)dt-∫
-a
a
tf(t)dt-∫
a
x
tf(t)dt+x∫
a
x
f(t)dt F’(x)=∫
-a
x
f(t)dt+xf(x)一xf(x)一xf(x)+∫
a
x
f(t)dt+xf(x)=∫
a
x
f(t)dt—∫
t
a
f(t)dt 因为F"(x)=2f(x)>0,所以F’(x)为单调增加的函数. (Ⅱ)因为F’(0)=∫
-a
0
f(x)dx—∫
0
a
∫(x)dx且f(x)为偶函数,所以F’(0)=0,又因为F"(0)>0,所以x=0为F(x)的唯一极小点,也为最小点.故最小值为F(0)=∫
-a
a
|t|f(t)dt=2∫
0
a
tf(t)dt. (Ⅲ)由2∫
0
a
tf(t)dt=f(a)一a
2
一1两边求导得 2af(a)=f’(a)-2a,于是f’(x)一2xf(x)=2x,解得f(x)=[∫2xe
∫-2xdx
dx+C]e
-∫-2xdx
=[*]一1,在2∫
0
a
tf(t)dt=f(a)一a
2
一1中令a=0得f(0)=1,则C=2,于是f(x)=[*]一1.
解析
转载请注明原文地址:https://kaotiyun.com/show/ue54777K
0
考研数学一
相关试题推荐
|A|是n阶行列式,其中有一行(列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
设三元线性方程有通解求原方程.
计算,其中D是由直线y=x—4与y2=2x所围成的区域.
设f(t)为连续函数,则累次积分化为极坐标形式的累次积分为().
设p(x)在[a,b]上非负且连续,f(x)与g(x)在[a,b]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b},比较的大小,并说明理由.
设函数f(u,v)可微,若z=f[x,f(x,x)],求
设方程y’+P(x)y=x2,其中P(x)=求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,+∞)内都满足方程,且满足初值条件y(0)=2.
求二分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的重心,设曲线的线密度ρ=1.
设四阶矩阵A=(aij)不可逆,a12的代数余子式A12≠0,α1,α2,α3,α4为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*x=0的通解为().
设(X1,X2,…,Xn)(n≥2)为标准正态总体,X的简单随机样本,则().
随机试题
下列不构成专利权终止的法律事实是()
口底及颌下的急性蜂窝织炎危及生命的并发症是【】
十二指肠切除,可影响下述哪些营养素的吸收()。
设计利用穿堂风进行自然通风的板式建筑。其迎风面与夏季最多风向的夹角宜为()。
分析评价开发区规划实施对生态环境的影响,主要包括()影响。
2019年12月11日晚8时15分许,某建筑高度达50m的大型商场,因发电机组电气线路短路形成高温电弧,引燃周围装饰材料并蔓延成火灾。在事故发生的第一时间,法人代表李某(该商场的消防安全责任人)立即启动应急预案,同时组织单位的义务消防队扑救火灾。与此同时,
企业发行的可转换公司债券,期末按规定计算确定的利息费用进行账务处理时,可能借记的会计科目有()。
党章规定:我国社会各方面的基层单位只要有党员三人以上的,都要成立党的基层组织。()
根据下面材料回答下列题。2007年7月份北京市下列各区县中城镇居民最低生活保障人数最少的是()。
尽管这名病人被诊断为植物状态,但她保留了理解口头______并通过大脑活动、而非语音或动作做出______的能力。“欧文表示:”她决定与我们合作,根据我们的______想象特定的任务,这是一个清楚的______行为,确凿无疑地证明,她有意识地认识自己
最新回复
(
0
)