首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组 同解.求a,b,c的值.
已知齐次线性方程组 同解.求a,b,c的值.
admin
2016-10-20
74
问题
已知齐次线性方程组
同解.求a,b,c的值.
选项
答案
因为方程组(Ⅱ)中“方程个数<未知数个数”,所以方程组(Ⅱ)必有非零解.因此方程组 (Ⅰ)必有非零解.从而(Ⅰ)的系数行列式必为0,即有 [*] 对方程组(Ⅰ)的系数矩阵作初等行变换,有 [*] 可求出方程组(Ⅰ)的通解是k(-1,-1,1)
T
. 由于(-1,-1,1)
T
是方程组(Ⅱ)的解,故有 [*] 当b=1,c=2时,方程组(Ⅱ)为[*]其通解是k(-1,-1,1)
T
,所以方程组(Ⅰ)与Ⅱ同解. 当b=0,c=1时,方程组(Ⅱ)为[*]由于秩r(Ⅱ)=1,而r(Ⅰ)=2,所以方程组(Ⅰ)与(Ⅱ)不同解.故b=0,c=1应舍去. 从而当a=2,b=1,c=2时方程组(Ⅰ)与(Ⅱ)同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/ugT4777K
0
考研数学三
相关试题推荐
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设对于半空间x>0内的任意光滑的定向封闭曲面∑,恒有其中f(x)在(0,+∞)内具有一阶连续导数.(1)求出f(x)满足的微分方程;(2)若f(1)=e2,求f(x).
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
用比较审敛法判别下列级数的收敛性:
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均实对称矩阵时,试证(1)的逆命题成立.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
随机试题
阅读下列材料并回答问题。材料1社会主义的优越性,归根到底是要大幅度发展社会生产力,逐步改善、提高人民的物质生活和精神生活。——摘自《邓小平文选》第2卷,人民出版社,1994年版,第251页材料2发展才是硬道理。—
《长恨歌》中诗句“云鬓花颜金步摇”中的“金步摇”是指()。
(2010,2011)图5-61所示圆轴,固定端外圆上y=0(图中A点)的单元体的应力状态是()。
下列噪声源中,会产生工业噪声的是()。
从员工的角度,薪酬具有的功能有()。
请分别说明几种属于公共仓库中的项目服务内容,并且对潜在客户非常重要。
近年来,越来越多的大学开始尝试自主招生,进而有人呼吁彻底取消统一高考。相关专家表示:取消统一高考势必带来对于经济欠发达地区,特别是对广大农村地区考生的不公平待遇。以下哪项如果为真,最能削弱上述观点?
左边给定的是纸盒外表面的展开图,右边哪一项能由它折叠而成?请把它找出来。
设幂级数的收敛半径为()
Thetwins______Americangirls.Theyarein______class,
最新回复
(
0
)