首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是( )
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是( )
admin
2016-05-09
25
问题
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A
2
α线性无关,而A
3
α=3Aα-2A
2
α,那么矩阵A属于特征值λ=-3的特征向量是( )
选项
A、α
B、Aα+2α
C、A
2
α-Aα
D、A
2
α+2Aα-3α
答案
C
解析
因为A
3
α+2A
2
α-3Aα=0.故
(A+3E)(A
2
α-Aα)=0=0(A
2
α-Aα),
因为α,Aα,A
2
α线性无关,那么必有A
2
α-Aα≠0,所以A
2
α-Aα是矩阵A+3E属于特征值λ=0的特征向量,即矩阵A属于特征值λ=-3的特征向量.所以应选C.
转载请注明原文地址:https://kaotiyun.com/show/ugw4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,A经过初等行变换得到B,则正确的是()
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
设函数y=f(x)由参数方程(0<t≤1)确定证明:y=f(x)在[1,﹢∞)上单调增加
设A是秩为1的3阶实对称矩阵,λ1=2是A的特征值,对应特征向量为a1=(﹣1,1,1)T,则方程组Ax=0的基础解系为()
设A=,则()不是A的特征向量.
设向量组(Ⅰ):a1,a2,…,ar可由向量组(Ⅱ):β1,β2,…,βs线性表示,则().
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(层为n阶单位矩阵).
随机试题
视远物时,平行光线聚焦于视网膜前的眼称为
原癌基因激活的结果是出现
李某,女,30岁,因疲乏无力、多汗怕热,爱发脾气,体重减轻,诊断为甲状腺功能亢进。护士为其进行饮食指导时,应告诉患者避免食用
腹痛一般不伴休克的是
下列各项,属我国卫生法基本原则的是()
目前认为人类主要致龋菌是
同一工程中的导线,应根据不同用途选择不同颜色加以区分,相同用途的导线颜色应一致。电源线正极应为()色,负极应为()。
在国外,大部分优先股票为( )所持有。
有下列()情形之一的,当事人可以向中国证监会申请以简易程序免除以要约方式增持股份。
APopularPastimeoftheEnglishPeopleOneofthebestmeansofunderstandingthepeopleofanynationiswatchingwhatthe
最新回复
(
0
)