首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(U,V)一N(2,2;4,1;),记X=U一bV,Y=V. (I)问当常数b为何值时,X与Y独立? (Ⅱ)求(X,Y)的密度函数f(x,y).
设二维随机变量(U,V)一N(2,2;4,1;),记X=U一bV,Y=V. (I)问当常数b为何值时,X与Y独立? (Ⅱ)求(X,Y)的密度函数f(x,y).
admin
2019-05-14
63
问题
设二维随机变量(U,V)一N(2,2;4,1;
),记X=U一bV,Y=V.
(I)问当常数b为何值时,X与Y独立?
(Ⅱ)求(X,Y)的密度函数f(x,y).
选项
答案
(I)由于X=U一bV,Y=V且[*]=1≠0,故(X,Y)服从一维正态分布,所以X与Y独立等价于X与Y不相关,即Cov(X,Y)=0,从而有 Cov(U—bV,V)=0,Cov(U,V)一bDV=0,即[*]一b·1=0, 解得b=1,即当b=1时,X与Y独立. (Ⅱ)由正态分布的性质知X=U—V服从正态分布,且 EX=EU—EV=2—2=0. DX=D(U—V)=DU+DV一2Cov(U,V)=4+1—2·[*]=3, 所以X~N(0,3),同理Y=V~N(2,1). 又因为X与Y独立,故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ui04777K
0
考研数学一
相关试题推荐
已知A是3×4矩阵,秩r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程组Aχ=0的任一解,求Aχ=0的基础解系.
求下列极限:(Ⅰ)(Ⅱ),其中常数a≠0.
设A=,向量α=是矩阵A-1属于特征值λ0的特征向量,若|A|=-2,求a,b,c及λ0的值.
设A为3阶矩阵,α1,α2,α3是3维线性无关的列向量,其中α1是齐次方程组Aχ=0的解,又知Aα2=α1+2α2,Aα3=α1-3α2+2α3.(Ⅰ)求矩阵A的特征值与特征向量;(Ⅱ)判断A是否和对角矩阵相似并说明理由;(Ⅲ
求引力:在x轴上有一线密度为常数μ,长度为l的细杆,在杆的延长线上离杆右端为a处有一质量为m的质点P,求证:质点与杆间的引力为F=(M为杆的质量).
设L是平面上从圆周x2+y2=a2上一点到圆周x2+y2=b2上一点的一条光滑曲线(a>0,b>0),r=,则I=∫Lr3(xdx+ydy)=_______.
把直线L的方程化为对称方程.
设f(x)在[0,1]上连续,且满足Jf(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
利用格林公式计算∫L(exsiny+x—y)dx+(excosy+y)dy,其中L是圆周y=(a>0)上从点A(2a,0)到点O(0,0)的弧段.
设函数f(x)=πx+x2(一π<x<π)的傅里叶级数为(ancosnx+bnsinnx),则b3=___________。
随机试题
AlthoughAprildidnotbringustherainsweallhopedfor,andalthoughtheCentralValleydoesn’tgenerallyexperiencetheatm
我国某企业与英国商人签订来料加工装配合同后,委托该加工企业在我国境内购买供加工成品的部分原材料。这种情况,凡属出口货物许可证管理的商品均应申领出口许可证。
民间非营利组织会计以权责发生制为会计核算基础。()
根据以下有关2007年上海市外贸进出口发展情况的材料,回答下面问题。 2007年上海外贸进出口协调快速增长。全年外贸进出口总额2829.73亿美元,比上年增长24.4%。其中,进口总额1390.45亿美元.增长22.1%;出口总额1439.28亿美元
(2012上集管)ZigBee是______网络的标准之一。
从有n个结点的顺序表中删除一个结点平均需要移动的结点个数是【】。
下图是校园网某台主机在命令行模式下执行某个命令时用sniffer捕获的数据。请根据图中信息回答下列问题(1)该主机上配置的IP地址的网络号长度最多是【1】。(2)图中的①和②删除了部分显示信息,其中①处的信息应该是【2】,②处的信访
Wouldyoumindme________here?
Whatemployersaresupposedtodoinhardeconomictimes?
Computerpeopletalkalotabouttheneedforotherpeopletobecome"computer-literate",inotherwords,tolearntounderstan
最新回复
(
0
)