首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(U,V)一N(2,2;4,1;),记X=U一bV,Y=V. (I)问当常数b为何值时,X与Y独立? (Ⅱ)求(X,Y)的密度函数f(x,y).
设二维随机变量(U,V)一N(2,2;4,1;),记X=U一bV,Y=V. (I)问当常数b为何值时,X与Y独立? (Ⅱ)求(X,Y)的密度函数f(x,y).
admin
2019-05-14
59
问题
设二维随机变量(U,V)一N(2,2;4,1;
),记X=U一bV,Y=V.
(I)问当常数b为何值时,X与Y独立?
(Ⅱ)求(X,Y)的密度函数f(x,y).
选项
答案
(I)由于X=U一bV,Y=V且[*]=1≠0,故(X,Y)服从一维正态分布,所以X与Y独立等价于X与Y不相关,即Cov(X,Y)=0,从而有 Cov(U—bV,V)=0,Cov(U,V)一bDV=0,即[*]一b·1=0, 解得b=1,即当b=1时,X与Y独立. (Ⅱ)由正态分布的性质知X=U—V服从正态分布,且 EX=EU—EV=2—2=0. DX=D(U—V)=DU+DV一2Cov(U,V)=4+1—2·[*]=3, 所以X~N(0,3),同理Y=V~N(2,1). 又因为X与Y独立,故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ui04777K
0
考研数学一
相关试题推荐
已知α1,α2,α3是非齐次线性方程组3个不同的解,证明:(Ⅰ)α1,α2,α3中任何两个解向量均线性无关;(Ⅱ)如果α1,α2,α3线性相关,则α1-α2,α1-α3线性相关.
已知β=(0,2,-1,a)T可以由α1=(1,-2,3,-4)T,α2=(0,1,-1,1)T,α3=(1,3,a,1)T线性表出,则a=_______.
设m×n矩阵其中ai≠0(i=1,2,…,m),bi≠0(y=1,2,…,n),则线性方程组Aχ=0的基础解系中解向量的个数是_______.
设A是n阶实对称矩阵,满足A4+2A3+A2+2A=0,若秩r(A)=r,则行列式|A+3E|=_______.
设有平面力F(χ,y)=(P(χ,y),Q(χ,y)),其中P(χ,y)=f(χ)+y[e-χ-f′(χ)],Q(χ,y)=f′(χ),函数f(χ)二阶连续可导,并满足f′(0)=0,试确定f(χ),使得(Ⅰ)力F对运动质点做的功与质点运动路径无
设φ(y)有连续导数,L为半圆周:(y≥χ),从点O(0,0)到点A(π,π)方向(见图25—1),求曲线积分I=∫L[φ(y)cosχ-y]dχ+[φ′(y)sinχ-1]dy.
设a>0为常数,求积分I=(χ+y)dχdy,其中D由直线χ=a,χ=0,y=a,y=-a及曲线χ2+y2=aχ所围.
已知总体X的密度函数为其中θ,β为未知参数,X1,…,Xn为简单随机样本,求θ和β的矩估计量.
求从点A(10,0)到抛物线y2=4x的最短距离.
设f(x)=x3一3x+q,其中常数q∈(一2,2),则f(x)的零点的个数为______.
随机试题
髋关节后脱位的畸形是
在下列检查中可能并存的体征是哪一项如果疼痛加重,在下列治疗方法中应首选
女,39岁,洗澡时发现左乳包块,无痛。3年前因肺结核住院治疗。体检:左乳房外上象限略高于右乳房外上象限,皮肤稍皱褶,局部可扪及直径为1.5cm大小肿块,质硬,表面不甚光滑,边界欠清,可活动,左腋下可扪及肿大淋巴结。胸透示陈旧性结核灶。如果为了进一步明确
采血、成分制备人员手的细菌采样时间
直肠癌的手术方式主要取决于
[2007年第68题]居住小区的生活排水系统排水定额与生活给水系统用水定额为下列何者关系?
当土地增值税纳税人隐瞒、虚报房地产成交价格时,可以采用市场比较法进行评估,并根据影响价格的因素进行修正,以下属于修正系数的是( )。
A、正确B、错误A
Jasonismostlikelyto
看涨期权又称卖出期权,因为投资者预期这种金融资产的价格将会上涨,从而可以市价卖出而获利。()
最新回复
(
0
)