首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证: BTAB为正定矩阵的充分必要条件是r(B)=n。
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证: BTAB为正定矩阵的充分必要条件是r(B)=n。
admin
2019-01-23
59
问题
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B
T
为B的转置矩阵,试证:
B
T
AB为正定矩阵的充分必要条件是r(B)=n。
选项
答案
必要性:设B
T
AB为正定矩阵,所以r(B
T
AB)=n,又因为r(B
T
AB)≤r(B)≤n,所以r(B)=n。 充分性:因(B
T
AB)
T
=B
T
A
T
(B
T
)
T
=B
T
AB,故B
T
AB为实对称矩阵。 若r(B)=n,则线性方程组Bx=0只有零解,从而对任意的n维实列向量x≠0,有Bx≠0。 又A为正定矩阵,所以对于Bx≠0,有(Bx)
T
A(Bx)>0。于是当x≠0,有x
T
(B
T
AB)x=(Bx)
T
A(Bx)>0,故B
T
AB为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/umP4777K
0
考研数学三
相关试题推荐
已知α1,α2,α3,α4是3维列向量,矩阵A=[α1,α2,2α3—α4+α2],B=[α3,α2,α1],C=[α1+2α2,2α2+3α4,α4+3α1],若|B|=—5,|C|=40,则|A|=__________.
设f(x)具有连续导数,且满足f(x)=x+∫0xtf’(x—t)dt.求.
设函数f(x)在[0,1]上连续,并设∫01f(x)dx=A,求I=∫01f(x)dx∫x1f(y)dy.
交换极坐标系下的二重积分I=∫—π/2π/2dθ∫0acosθf(r,θ)dr的次序,其中f(r,θ)为连续函数.
交换二重积分I=∫01dxf(x,y)dy的积分次序,其中f(x,y)为连续函数.
设随机变量X与Y分别表示将一枚骰子接连抛两次后出现的点数.试求齐次方程组:的解空间的维数(即基础解系所含向量的个数)的数学期望和方差.
设A为三阶实对称矩阵,且存在可逆矩阵P=.(1)求a,b的值;(2)求正交变换x=Qy,化二次型f(x1,x2,x3)=XTA*x为标准形,其中A*为A的伴随矩阵;(3)若kE+A*合同于单位矩阵,求k的取值范围.
设X1,X2,X3,X4,为来自总体N(1,σ2)(σ>0)的简单随机样本,则统计量[X1-X2]/丨X3+X4-2丨的分布为
设幂级数anχn的收敛半径为3,则幂级数nan(χ-1)n+1的收敛区间为_______.
求函数f(x)=的最大值与最小值.
随机试题
能敛肺涩肠的药物是()(1994年第139题)
A、大流行B、散发C、有季节性D、暴发E、流行发病率呈历年一般水平的是
根据室内环境污染控制的不同要求,下列属于I类民用建筑工程的是()。
如果某项资产不能再为企业带来经济利益,即使是由企业拥有或者控制的,也不能作为企业的资产在资产负债表中列示。
资料:2007年7月1日发行的某债券,面值100元,期限3年,票面年利率8%,每半年付息一次,付息日为6月30日和12月31日。要求:某投资者2009年7月1日以97元购入,试问该投资者持有该债券至到期日的收益率是多少?(2007年)
能促进钙的吸收的维生素是()。
很多人认为,农村家养的土鸡,土猪,采用传统方式喂养,吃的是粮食、蔬菜、青草,不吃饲料,生长周期长,运动量大,肌肉紧实,更有营养,味道更加鲜美,所以市场上的土鸡,土猪通常售价更高。但研究者指出,其实土鸡或土猪并不比集中饲养的肉鸡和肉猪更有营养、更安全。
A、 B、 C、 D、 B
二次型f(x1,x2,x3,x4)=x32+4x42+2x1x2+4x3x4的规范形是__________.
HappinessIsaJourneyThereisnowaytohappiness.Happinessistheway./Don’twastetoomuchofyourtimestudying,wor
最新回复
(
0
)