首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)叙述并证明费马(Fermat)定理(即可导函数存在极值点的必要条件); (Ⅱ)叙述并证明极值的第一充分条件,举例说明此充分条件并非必要条件.
(Ⅰ)叙述并证明费马(Fermat)定理(即可导函数存在极值点的必要条件); (Ⅱ)叙述并证明极值的第一充分条件,举例说明此充分条件并非必要条件.
admin
2020-07-03
64
问题
(Ⅰ)叙述并证明费马(Fermat)定理(即可导函数存在极值点的必要条件);
(Ⅱ)叙述并证明极值的第一充分条件,举例说明此充分条件并非必要条件.
选项
答案
(Ⅰ)费马定理:设f(x)在x=x
0
处可导,并且f(x
0
)为f(x)的极值,则必有f′(x
0
)=0. 证明:设f(x)在x=x
0
处可导,故存在x=x
0
的某邻域U(x
0
),f(x)在U(x
0
)内有定义. 又设f(x
0
)为f(x)的极值(不妨认为f(x
0
)为f(x)的极大值),故知又存在x=x
0
的一个去心邻域 [*]U(x
0
),有 f(x)<f(x
0
),x∈[*](x
0
). 从而 [*] 令x→x
0
取极限,因f(x)在x=x
0
处可导,即 [*]=f′(x
0
) (存在). 所以 [*] [*] 由于f′(x
0
)存在,f′(x
0
)=f′
+
(x
0
),所以f′(x
0
)=0,证毕. (Ⅱ)第一充分条件:设f(x)在点x
0
处连续,在[*](x
0
)内可导. (1)若在x
0
的左侧邻域内f′(x)>0,右侧邻域内f′(x)<0,则f(x
0
)为极大值. (2)若在x
0
的左侧邻域内f′(x)<0,右侧邻域内f′(x)>0,则f(x
0
)为极小值. 证明:只证(1)情形,(2)情形是类似的.设x∈[*](x
0
)且x<x
0
,由拉格朗日中值定理, f(x)-f(x
0
)=f′(ξ
1
)(x-x
0
)<0,x<ξ
1
<x
0
. 若x∈[*](x
0
)且x>x
0
,则有 f(x) -f(x
0
)=f′(ξ
2
)(x-x
0
)<0,x>ξ
2
>x
0
. 所以当x∈[*](x
0
)时,有f(x)-f(x
0
)<0,从而知f(x
0
)为f(x)的一个极大值. 举例说明定理的条件是充分而非必要的. 例:取 [*] 易见,存在x=0的去心邻域[*]6(0)时,f(x)≥f(0),故x=0是f(x)的极小值点.但当x≠0时, f′(x)=2x(1+sin[*] 无论取[*](0)多么小,当x→0时,f′(x)的第一项趋于0,而第二项cos[*]在-1与1之间振荡,所以f′(x)并不保持确定的符号,并不满足充分条件,f(0)仍可以是极值.
解析
转载请注明原文地址:https://kaotiyun.com/show/2L84777K
0
考研数学二
相关试题推荐
设y=χ2lnχ,求y(n)(n≥3).
证明方程χ+p+qcosχ=0有且仅有一个实根,其中p,q为常数,且0<q<1.
设A是一个n阶实矩阵,使得AT+A正定,证明A可逆.
抛物线y2=2x把圆x2+y2=8分成两个部分,求左右两个部分的面积之比.
设f(χ)在[a,b]上连续可导,且f(a)=0.证明:∫abf2(χ)dχ≤∫ab[f′(χ)]2dχ.
讨论方程2x3一9x2+12x—a=0实根的情况.
设函数f(x)=并记F(x)=∫0xf(t)dt(0≤x≤2),试求F(x)及f(x)dx.
设n阶矩阵A和B满足条件A+B=AB.已知,求矩阵A.
积分()
下列命题正确的是().
随机试题
DNA分子上能被RNA聚合酶特异结合的部位叫作()
口有涩味如食生柿子的感觉属于
半夏除燥湿化痰,降逆止呕外,还有的功效是
根据商品房建设的需要,可以依照法律程序提前收回已出让的土地使用权,但在收回时应根据土地使用者利用土地的实际情况和土地的剩余年限给予适当赔偿。()
在工程经济分析中,以投资收益率指标作为主要决策依据,其可靠性较差的原因在于()。
根据《会计档案管理办法》的规定,会计档案的保管期限为永久定期两类。会计档案的定期保管期限最短为()
对于《普通高中语文课程标准(实验)》中提出的“表达与交流”方面的实施建议,下列理解不正确的是()。
为了解幼儿同伴交往特点,研究者深入幼儿所在的班级,详细记录其交往过程的语言和作等。这一研究方法属于()。
科学的可靠性还源于科学界具有公认的评价准则,所以能对理论取得一致意见,因此在比较成熟的科学领域,一个问题无论问哪一个科学家,都可以得到大致相同的答案。哲学、伦理学等学科没有公认的评价准则,同一个问题问不同的哲学家或伦理学家可能得到完全相反的结果,令人无所适
Foxesandfarmershavenevergotonwell.Thesesmalldog-likeanimalshavelongbeenaccusedofkillingfarmanimals.Theyare
最新回复
(
0
)