首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)叙述并证明费马(Fermat)定理(即可导函数存在极值点的必要条件); (Ⅱ)叙述并证明极值的第一充分条件,举例说明此充分条件并非必要条件.
(Ⅰ)叙述并证明费马(Fermat)定理(即可导函数存在极值点的必要条件); (Ⅱ)叙述并证明极值的第一充分条件,举例说明此充分条件并非必要条件.
admin
2020-07-03
51
问题
(Ⅰ)叙述并证明费马(Fermat)定理(即可导函数存在极值点的必要条件);
(Ⅱ)叙述并证明极值的第一充分条件,举例说明此充分条件并非必要条件.
选项
答案
(Ⅰ)费马定理:设f(x)在x=x
0
处可导,并且f(x
0
)为f(x)的极值,则必有f′(x
0
)=0. 证明:设f(x)在x=x
0
处可导,故存在x=x
0
的某邻域U(x
0
),f(x)在U(x
0
)内有定义. 又设f(x
0
)为f(x)的极值(不妨认为f(x
0
)为f(x)的极大值),故知又存在x=x
0
的一个去心邻域 [*]U(x
0
),有 f(x)<f(x
0
),x∈[*](x
0
). 从而 [*] 令x→x
0
取极限,因f(x)在x=x
0
处可导,即 [*]=f′(x
0
) (存在). 所以 [*] [*] 由于f′(x
0
)存在,f′(x
0
)=f′
+
(x
0
),所以f′(x
0
)=0,证毕. (Ⅱ)第一充分条件:设f(x)在点x
0
处连续,在[*](x
0
)内可导. (1)若在x
0
的左侧邻域内f′(x)>0,右侧邻域内f′(x)<0,则f(x
0
)为极大值. (2)若在x
0
的左侧邻域内f′(x)<0,右侧邻域内f′(x)>0,则f(x
0
)为极小值. 证明:只证(1)情形,(2)情形是类似的.设x∈[*](x
0
)且x<x
0
,由拉格朗日中值定理, f(x)-f(x
0
)=f′(ξ
1
)(x-x
0
)<0,x<ξ
1
<x
0
. 若x∈[*](x
0
)且x>x
0
,则有 f(x) -f(x
0
)=f′(ξ
2
)(x-x
0
)<0,x>ξ
2
>x
0
. 所以当x∈[*](x
0
)时,有f(x)-f(x
0
)<0,从而知f(x
0
)为f(x)的一个极大值. 举例说明定理的条件是充分而非必要的. 例:取 [*] 易见,存在x=0的去心邻域[*]6(0)时,f(x)≥f(0),故x=0是f(x)的极小值点.但当x≠0时, f′(x)=2x(1+sin[*] 无论取[*](0)多么小,当x→0时,f′(x)的第一项趋于0,而第二项cos[*]在-1与1之间振荡,所以f′(x)并不保持确定的符号,并不满足充分条件,f(0)仍可以是极值.
解析
转载请注明原文地址:https://kaotiyun.com/show/2L84777K
0
考研数学二
相关试题推荐
设D=计算D;
计算行列式Dn=,其中n>2。
求解下列方程:(Ⅰ)求方程χy〞=y′lny′的通解;(Ⅱ)求yy〞=2(y′2-y′)满足初始条件y(0)=1,y′=(0)=2的特解.
设A=,问当k取何值时,存在可逆矩阵P,使得P-1AP成为对角矩阵?并求出P和相应的对角矩阵.
求二重积分,其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域。
讨论方程2x3一9x2+12x—a=0实根的情况.
设齐次线性方程组的系数矩阵为A.且存在3阶方阵B≠0,使AB=0,则
设A为n阶方阵且|A|=0,则
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数ψ(x)与kx之和,并求出此常数k;(2)求(1)中的(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求
曲线的渐近线方程是_______.
随机试题
背景某工程双代号时标网络图如下:假设各项工作均匀速进展,其中,工作箭线上方的数字为该工作每月完成的投资额(单位:万元)。问题根据时标网络图进度前锋线分析6月、11月底工程的实际进展情况。
我国关于夫妻应当互相忠实的规定是在哪部婚姻法规中()
哲学上的两大基本派别是指()
下列抗真菌药物适应证不正确的是
患者,男,29岁,全身皮肤发黄,伴有发热,头痛,恶心,呕吐,舌质红,舌苔黄腻,脉弦滑,用药宜选用
下列各项中,属于外部权益筹资的是()。
下列规范性文件中,属于行政法规的是()。
2012年投资者A的收益率为19%,投资者B的收益率为15%,A的投资组合β值为1.5,B的投资组合β值为1。如果无风险利率为9%,同期市场收益率为15%,则A在选股方面更加出色。()
在Windows系统中,通过文件扩展名判别文件类型,______是一种可执行文件的扩展名。
WhatdoweknowaboutSteve?
最新回复
(
0
)