首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)叙述并证明费马(Fermat)定理(即可导函数存在极值点的必要条件); (Ⅱ)叙述并证明极值的第一充分条件,举例说明此充分条件并非必要条件.
(Ⅰ)叙述并证明费马(Fermat)定理(即可导函数存在极值点的必要条件); (Ⅱ)叙述并证明极值的第一充分条件,举例说明此充分条件并非必要条件.
admin
2020-07-03
61
问题
(Ⅰ)叙述并证明费马(Fermat)定理(即可导函数存在极值点的必要条件);
(Ⅱ)叙述并证明极值的第一充分条件,举例说明此充分条件并非必要条件.
选项
答案
(Ⅰ)费马定理:设f(x)在x=x
0
处可导,并且f(x
0
)为f(x)的极值,则必有f′(x
0
)=0. 证明:设f(x)在x=x
0
处可导,故存在x=x
0
的某邻域U(x
0
),f(x)在U(x
0
)内有定义. 又设f(x
0
)为f(x)的极值(不妨认为f(x
0
)为f(x)的极大值),故知又存在x=x
0
的一个去心邻域 [*]U(x
0
),有 f(x)<f(x
0
),x∈[*](x
0
). 从而 [*] 令x→x
0
取极限,因f(x)在x=x
0
处可导,即 [*]=f′(x
0
) (存在). 所以 [*] [*] 由于f′(x
0
)存在,f′(x
0
)=f′
+
(x
0
),所以f′(x
0
)=0,证毕. (Ⅱ)第一充分条件:设f(x)在点x
0
处连续,在[*](x
0
)内可导. (1)若在x
0
的左侧邻域内f′(x)>0,右侧邻域内f′(x)<0,则f(x
0
)为极大值. (2)若在x
0
的左侧邻域内f′(x)<0,右侧邻域内f′(x)>0,则f(x
0
)为极小值. 证明:只证(1)情形,(2)情形是类似的.设x∈[*](x
0
)且x<x
0
,由拉格朗日中值定理, f(x)-f(x
0
)=f′(ξ
1
)(x-x
0
)<0,x<ξ
1
<x
0
. 若x∈[*](x
0
)且x>x
0
,则有 f(x) -f(x
0
)=f′(ξ
2
)(x-x
0
)<0,x>ξ
2
>x
0
. 所以当x∈[*](x
0
)时,有f(x)-f(x
0
)<0,从而知f(x
0
)为f(x)的一个极大值. 举例说明定理的条件是充分而非必要的. 例:取 [*] 易见,存在x=0的去心邻域[*]6(0)时,f(x)≥f(0),故x=0是f(x)的极小值点.但当x≠0时, f′(x)=2x(1+sin[*] 无论取[*](0)多么小,当x→0时,f′(x)的第一项趋于0,而第二项cos[*]在-1与1之间振荡,所以f′(x)并不保持确定的符号,并不满足充分条件,f(0)仍可以是极值.
解析
转载请注明原文地址:https://kaotiyun.com/show/2L84777K
0
考研数学二
相关试题推荐
设函数f(χ)二阶连续可导,f(0)=1且有f′(χ)+3∫0χf′(t)dt+2χ∫01f(tχ)dt+e-χ=0,求f(χ).
将长为a的一段铁丝截成两段,用一段围成正方形,另一段围成圆,为使两段面积之和最小,问两段铁丝各长多少?
求二重积分,其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域。
设则有()
-2dx+dy-2ln2dz
曲线y=3x++1的渐近线方程为________.
设则f’x(0,1)=_____________.
曲线y=的水平渐近线方程为_________。
设则A-1=__________.
-2dx+dy-2ln2dz
随机试题
安全阀的出口管道应指向安全地点,在进出管道上设置截止阀时应加铅封,且应锁定在全开启状态。()
下列不属于第二审民事判决书中当事人身份事项的是
男,45岁,双大腿中段被汽车压伤6小时抬送就诊。体查:双大腿中段严重肿胀、青紫、畸形,有骨擦音及反常活动,膝以下感觉及运动正常,足部血运良好,足背动脉可扪及,身体其他部位未见异常。X线片示双股骨中段严重粉碎性骨折。对于此类创伤病人应警惕哪种并发症最易出
A.乙醚沉淀法B.胆甾醇沉淀法C.铅盐沉淀法D.吉拉尔试剂提取法E.碱水提取法
治肝胆结石、石淋、砂淋,首选的药物是
急性心肌梗死患者的护理措施中,下列正确的是
母公司拥有若干子公司、分公司的情况下,下列各项中,可以作为会计主体的有()。
年薪制模型的组成要素不包括()。
20世纪50年代,英国首相丘吉尔___________于美苏技术的飞跃发展,乃开始对技术正视,1956年的白皮书是技术教育的绿灯,继而技术学院纷纷成立。今天,科技已经普遍成为大学知识结构的一个组成部分。就大学教学与研究来说,不但再没有轻忽“实用性”知识的现
下列投资决策方法中,其指标越小越好的是()
最新回复
(
0
)