首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设.当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C。
设.当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C。
admin
2021-01-19
68
问题
设
.当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C。
选项
答案
设[*],则AC—CA=B, 即[*], 等价地有[*] ① 对方程组的增广矩阵作初等行变换得 [*]。 当a≠-1或6≠0时,方程组①无解. 当a=-1,b=0时,方程组①有无穷多解,此时 [*], 得①的通解为[*],k
1
,k
2
为任意常数. 所以,当a=-1,b=0时,存在矩阵C使得,AC-CA=B,并且 [*],K
1
,K
2
为任意常数.
解析
由于从矩阵方程中不能直接得到C,因此转化为求解线性方程组.
转载请注明原文地址:https://kaotiyun.com/show/ut84777K
0
考研数学二
相关试题推荐
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
已知以2,π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明使得F"(x0)=0.
设其中A,B为n阶矩阵,A,B的伴随矩阵为A*,B*,求C的伴随矩阵C*.
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
设函数f(y)的反函数f一1(x)及f’[f一1(x)]与f"[f一1(x)]都存在,且f一1[f一1(x)]≠0.证明:。
由方程ex-xy2+siny=0确定y是x的函数,求dy/dx.
设f(x)在(a,b)内可导,证明:,x0∈(a,b)且x≠x0时,f’(a)在(a,b)单调减少的充要条件是f(x0)+f’(x0)(x-x0)>f(x).(*)
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
求极限:
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
随机试题
根据物权法律制度的规定,下列有关按份共有的表述中,正确的有()。
根据承兑信用证的特点,受益人出具的汇票只能以()为付款人。
全球生态学的研究对象是()
某女,50岁。阴部于涩,灼热瘙痒,带下量少,甚则如血样,五心烦热,时有烘热汗出,口干,腰酸耳鸣,舌红少苔,脉细数。治疗方选
世界上历史最为悠久的股票指数是()。
对企业富余职工实行下岗而不是直接辞退的做法,属于()劳动者权益。
配器
菲利普斯曲线揭示了失业率和通胀率之间存在()关系。
已知直线l:3x+4y-1=0,则点A(x0,y0)关于l的对称点坐标为。(1)x0=0,y0=2.(2)x0=2,y0=0.
科学与文化的其他方面关系长期紧张。想一想,17世纪的伽利略因其信念离经叛道,遭到天主教会的审判;诗人威廉-布莱克尖税地批评了艾萨克-牛顿的机械论世界观。在本世纪如果说有区别的话,那就是科学与人文科学问的裂痕更深了。前些年,科学界势力强大,对批评者
最新回复
(
0
)