首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)可微,且满足,则f(x)= .
设f(x)可微,且满足,则f(x)= .
admin
2019-08-27
78
问题
设f(x)可微,且满足
,则f(x)=
.
选项
答案
cosx-sin x
解析
【思路探索】由题设条件,利用变限函数求导法得微分方程:f"(x)+f(x)=0,且f(0)=1,fˊ(0)=-1,解该方程即可得f(x).
于是原方程变为
.两边对x求导,得
整理得
两边再对x求导,得0=fˊ(x)-f(-x)·(-1),即
fˊ(x)=-f(-x),fˊ(-x)=-f(x) (*)
上式两边对x求导,得f"(x)=fˊ(-x). (**)
由(*),(**)得f"(x)=-f(x).即f"(x)+f(x)=0.解此方程得
注意到f(0)=1,fˊ(0)=-1,又因为f(0)=C
1
,fˊ(0)=C
2
,所以C
1
=1,C
2
=-1.
故f(x)=cos x-sin x.
故应填cos x-sin x.
【错例分析】对于本题,有的学生做法如下:
在已知方程
两端对x求导,得
又f(0)=0,所以f(x)=1.故应填1.
上述做法显然是错误的,原因是积分
不能直接对x求导,而正确的做法是:先通过变量代换u=t-x,使
,即使积分
的被积函数f(x)中不出现x,然后再在已知方程两端对x求导,并解方程.
转载请注明原文地址:https://kaotiyun.com/show/v2A4777K
0
考研数学二
相关试题推荐
设平面图形D由摆线x=a(t-sint),y=a(1-cost),0≤t≤2π,a>0的第一拱与x轴围成,求该图形D对y轴的面积矩My.
设当x∈[-1,1,1]时,f(x)连续,F(x)=∫-11|x-t|]f(t)dt,x∈[-1,1].(I)若f(x)为偶函数,证明F(x)也是偶函数;(Ⅱ)若f(x)>0(-1≤x≤1),证明曲线y=F(x)在区间[-1,1]上是凹的.
设f(x)在x=x0的某邻域内存在二阶导数,且.则存在点(x0,f(x0))的左、右邻域U与U﹢使得()
从抛物线y=x2—1上的任意一点P(t,t2—1)引抛物线y=x2的两条切线.证明该两条切线与抛物线y=x2所围面积为常数.
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立.①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关.②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
设f(x,y)=,试讨论f(x,y)在点(0,0)处的连续性,可偏导性和可微性.
设z=f(x-y+g(x-y-z)),其中f,g可微,求
设函数f(x)在[0,1]上可微,且满足f(1)=xf(x)dx(0<λ<1),证明:存在ξ∈(0,1),使得f’(ξ)=
设A是n阶矩阵,X是任意的n维列向量,B是任意的n阶方阵,则下列说法错误的是()
设n阶矩阵A,B等价,则下列说法中不一定成立的是()
随机试题
女,25岁。咯血伴全身皮肤黏膜出血点。以下哪种疾病最不可能
对轻、中度肾功能不全患者,宜选用
在探测器的一定范围内不应有遮挡物,探测器距墙壁、梁边或防烟通道垂壁的净距不应小于( )m。
“进口日期”栏应填()。“贸易方式”栏应填()。
“进口口岸”栏:()。“净重”栏:()。
品牌保护实质上就是对品牌所包含的知识产权进行保护,其关键在于()。
材料:
一、注意事项1.申论考试是对应考者综合分析材料的能力、提出和解决问题能力、文字表达能力的测试。2.作答时限:建议阅读给定资料40分钟,作答110分钟。3.仔细阅读给定资料,按照后面提出的“作答要求”依次作答。4.请在指定位置作答,在草稿纸上或者其他
试阐述西方利率决定理论的发展演变过程。运用西方利率理论分析中国利率市场化改革进程,并在此基础上分析中国利率化过程中所存在的问题,最后提出对中国利率市场化改革路径的政策建议。
WhatisLondon’sWestEnd?
最新回复
(
0
)