首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,ξ1,ξ2,ξ3是三个线性无关的三维列向量,满足Aξi=ξi,i=1,2,3,则A=________
设A是三阶矩阵,ξ1,ξ2,ξ3是三个线性无关的三维列向量,满足Aξi=ξi,i=1,2,3,则A=________
admin
2019-08-11
49
问题
设A是三阶矩阵,ξ
1
,ξ
2
,ξ
3
是三个线性无关的三维列向量,满足Aξ
i
=ξ
i
,i=1,2,3,则A=________
选项
答案
E
解析
因Aξ
1
=ξ
2
,Aξ
2
=ξ
2
,Aξ
3
=ξ
3
,合并成矩阵形式有
[Aξ
1
,Aξ
2
,Aξ
3
]=A[ξ
1
,ξ
2
,ξ
3
]=[ξ
1
,ξ
2
,ξ
3
],
ξ
1
,ξ
2
,ξ
3
线性无关,[ξ
1
,ξ
2
,ξ
3
]是可逆阵,故A=[ξ
1
,ξ
2
,ξ
3
][ξ
1
,ξ
2
,ξ
3
]
-1
=E.
转载请注明原文地址:https://kaotiyun.com/show/vCN4777K
0
考研数学二
相关试题推荐
A=E-αβT,其中α,β都是n维非零列向量,已知A2=3E-2A,求αTβ.
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.记P=(α1,α2,α3),求P-1AP=________.
设α1=(2,1,2,3)T,α2=(-1,1,5,3)T,α3=(0,-1,-4,-3)T,α4=(1,0,-2,-1)T,α5=(1,2,9,8)T.求r(α1,α2,α3,α4,α5),找出一个最大无关组.
n阶矩阵A=的秩为n-1,则a=().
设f(x)在[a,b]上有二阶连续导数,求证:∫abf(x)dx=(b-a)[f(a)+f(b)]+∫abf’’(x)(x-a)(x-b)dx.
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
在[0,+∞)上给定曲线y=y(x)>0,y(0)=2,y(x)有连续导数.已知,[0,x]上一段绕x轴旋转所得侧面积等于该段旋转体的体积.求曲线y=y(x)的方程.
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
求下列方程的通解:(Ⅰ)(x-2)dy=[y+2(x-2)2]dx;(Ⅱ)y2dx=(x+y2)dy;(Ⅲ)(3y-7x)dx+(7y-3x)dy=0.
求下列变限积分函数的导数:(Ⅰ)F(x)=∫2xln(x+1),求F’(x)(x≥0);(Ⅱ)设f(x)处处连续,又f’(0)存在,F(x)=∫1x[∫0tf(t)du]dt,求F’’(x)(-∞<x<+∞).
随机试题
进行部分实施法最方便的一种工具是()
芳香化湿药的归经是
男,56岁,BMI26.8,无“三多一少”症状,空腹血糖6.6mmol/L,父亲患糖尿病,疑糖尿病,下列哪项检查最有意义
男,70岁。痰中带血1月余。吸烟史10年,40支/天。胸部X线片:右肺门大块阴影伴右上肺不张。支气管镜见右上肺开口内新生物。初步诊断首先考虑的肺癌类型是
多栏式现金日记账属于()。
在专业化的过程中,社会工作发展的重要特点有( )。
简述商业银行贷款管理中的“6C”原则。[厦门大学2012金融硕士;东北财经大学2008研;中国人民银行20007研]
WhichofthefollowingisfalseaboutMr.Bush?
Ifyou’regoingtotheairportbycar,couldyougivemea______?
()留候乘客()避车台()弯曲道路()导航设备
最新回复
(
0
)