首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,ξ1,ξ2,ξ3是三个线性无关的三维列向量,满足Aξi=ξi,i=1,2,3,则A=________
设A是三阶矩阵,ξ1,ξ2,ξ3是三个线性无关的三维列向量,满足Aξi=ξi,i=1,2,3,则A=________
admin
2019-08-11
47
问题
设A是三阶矩阵,ξ
1
,ξ
2
,ξ
3
是三个线性无关的三维列向量,满足Aξ
i
=ξ
i
,i=1,2,3,则A=________
选项
答案
E
解析
因Aξ
1
=ξ
2
,Aξ
2
=ξ
2
,Aξ
3
=ξ
3
,合并成矩阵形式有
[Aξ
1
,Aξ
2
,Aξ
3
]=A[ξ
1
,ξ
2
,ξ
3
]=[ξ
1
,ξ
2
,ξ
3
],
ξ
1
,ξ
2
,ξ
3
线性无关,[ξ
1
,ξ
2
,ξ
3
]是可逆阵,故A=[ξ
1
,ξ
2
,ξ
3
][ξ
1
,ξ
2
,ξ
3
]
-1
=E.
转载请注明原文地址:https://kaotiyun.com/show/vCN4777K
0
考研数学二
相关试题推荐
矩阵A=,求解矩阵方程2A=XA-4X.
A是3阶矩阵,α是3维列向量,使得P=(α,Aα,A2α)可逆,并且A3α=3Aα-2A2α.(1)求B,使得A=PBP-1.(2)求|A+E|.
A=E-αβT,其中α,β都是n维非零列向量,已知A2=3E-2A,求αTβ.
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵B=,并且AB=0,求齐次线性方程组AX=0的通解.
已知A是m×n矩阵,B是n×P矩阵,如AB=C,且r(C)=m,证明A的行向量线性无关.
A为三阶实对称矩阵,A的秩为2,且(1)求A的特征值与特征向量.(2)求矩阵A.
设z=f(u,v,x),u=φ(x,y),v=ψ(y)都是可微函数,求复合函数z=f(φ(x,y),ψ(y),x)的偏导数
随机试题
AMI发生后,血中出现最早的心肌损伤标志
患者,男性,60岁,农民。头面颈、上胸背及双前臂、手背部起皮疹伴瘙痒4年余,每于春末夏初季节皮疹复发或加重,当地医院诊断“湿疹”予以抗组胺药口服及皮质激素软膏外用症状可缓解。2周前野外干活后原部位皮疹又加重。既往有“心脏病”史5年,一直口服胺碘酮。皮科检查
女性,26岁。因反复鼻衄、牙龈渗血20年,月经过多1年入院。患者自幼即有反复自发性出血史,局部压迫等处理可止血。其母有类似病史。查体:四肢皮肤可见散在紫红色圆形斑点,稍隆起皮面,直径约1~2mm,坡片加压可褪色。余无特殊。实验室检查:血象:WBC5.6×1
沙眼主要的临床特点
适用于中度心力衰竭的维持治疗的药物是
某女,40岁,小腹有包块,,时疼痛,按之柔软,带下量多,色白质黏,形体畏寒,平时月经期延后,月经量多,小便不多,舌暗,苔、白腻,脉沉滑。应诊断为
刘某从事食品销售工作,为了谋取利益,销售一种名为“泡椒牛板筋”的食品.但该食品配料标签上没有载明存在牛筋,不足以造成严重食物中毒事故或者其他严重食源性疾病。对刘某的行为定性.下列选项正确的是:()
我不喜欢一个苦孩求学的故事。家庭十分困难,父亲逝去,弟妹嗷嗷待哺,可他大学毕业后,还要坚持读研究生,母亲只有去卖血……我以为那是一个自私的学子。求学的路很漫长,一生一世的事业,何必太在意几年蹉跎?况且这时间的分分秒秒都苦涩无比,需用母亲的鲜血灌溉!一个连母
HowtoReducePresentationStress1.CausesofpresentationstressFearofbeing【T1】【T1】______DoubtofyourownabilityFocusin
Forthispart,youareallowed30minutestowriteashortessaytoexpressyourviewsontheimportanceofmakingprogress.Yo
最新回复
(
0
)