首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A=(α1,α2,α3),|A|=1,B=(α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3),求|B|.
设3阶矩阵A=(α1,α2,α3),|A|=1,B=(α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3),求|B|.
admin
2018-06-27
92
问题
设3阶矩阵A=(α
1
,α
2
,α
3
),|A|=1,B=(α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
),求|B|.
选项
答案
B=(α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
) =(α
1
,α
2
,α
3
)[*] |B|=|α
1
,α
2
,α
3
|[*]=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/yik4777K
0
考研数学二
相关试题推荐
设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
设,B是3阶非零矩阵,满足BA=0,则矩阵B=_______.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A*一6E的秩.
已知矩阵只有一个线性无关的特征向量,那么矩阵A的特征向量是__________.
下列矩阵中两两相似的是
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3设P=(α,Aα,A2α),求P-1AP.
随机试题
行政发展模式中,________的发展经历了一个从传统公共行政向新公共管理的变化,其主要特征是公共管理方式的根本性变革。()
A.低频声波B.中频声波C.高频声波D.任何频率的声波能引起耳蜗顶部产生最大振幅的是
下列哪一项不是司法的原则:
土坝黏性土填筑的设计控制指标包括最优含水率和()。
下列选项中不属于我国支付结算原则的是()。
根据我国法律规定,发生劳动争议,必须经过一个前置程序,才能再向人民法院起诉,该前置程序是()。
下列关于素质教育的说法中,错误的有()。
求函数f(x)=的单调区间与极值。
全面建成小康社会,更重要、更难做到的是“全面”。“全面”讲的是发展的
一间宿舍可住多个学生,则实体宿舍和学生之间的联系是()。
最新回复
(
0
)