首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A=(α1,α2,α3),|A|=1,B=(α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3),求|B|.
设3阶矩阵A=(α1,α2,α3),|A|=1,B=(α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3),求|B|.
admin
2018-06-27
53
问题
设3阶矩阵A=(α
1
,α
2
,α
3
),|A|=1,B=(α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
),求|B|.
选项
答案
B=(α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
) =(α
1
,α
2
,α
3
)[*] |B|=|α
1
,α
2
,α
3
|[*]=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/yik4777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,X1,X2是分别属于λ1和λ2的特征向量,试证明X1+X2不是A的特征向量.
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=(α3,α2,α1,β一α4).求方程组Bx=αl—α2的通解.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A*一6E的秩.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征值;
下列矩阵中属于正定矩阵的是
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
随机试题
抗Sm抗体是干燥综合征的特异性标志抗体。
急性胃炎的确诊依赖哪项检查()。
在孕妇腹壁上听诊,与胎儿心率相一致的音响是
全民所有制工业企业的厂长有下列职权()。
以下关于场地设计的防震措施错误的是()。
监理工程师对工程质量事故调查组提出的技术处理意见,可组织相关单位研究,责成相关单位完成()后,予以审核签认。
在个人经营贷款业务中,贷款人需对借款人所经营企业的盈利状况进行调查,主要是为了()。
根据《行政复议法》的规定,下列情形中,公民、法人或者其他组织可以申请行政复议的有()。
鹤壁市著名的土特产()被称为“淇河三珍”,自古就是朝廷的贡品。
社会工作者黎晓参加社会工作仅一个月,她最近要对负责的社区进行调查,则她在接触居民、展开话题后,应把谈话维持在居民可以()的水平上。
最新回复
(
0
)