首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2017年] 设函数在[0,1]上具有二阶导数,且f(1)>0,.证明: 方程f(x)在(0,1)内至少有一个实根;
[2017年] 设函数在[0,1]上具有二阶导数,且f(1)>0,.证明: 方程f(x)在(0,1)内至少有一个实根;
admin
2019-04-08
30
问题
[2017年] 设函数在[0,1]上具有二阶导数,且f(1)>0,
.证明:
方程f(x)在(0,1)内至少有一个实根;
选项
答案
由[*]可知,f(0)=0.根据极限的保号性知,在0的去心领域内,必存在一点c,使得f(C)<0.由题意f(1)>0,则f(C)f(1)<0,由零点定理知,必存在一点ξ
1
∈(c,1) [*] (0,1)使得f(ξ
1
)=0.结论得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/vD04777K
0
考研数学一
相关试题推荐
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。(Ⅰ)证明:r(A)=2;(Ⅱ)设β=α1+α2+α3,求方程组Ax=β的通解。
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0。试证这三条直线交于一点的充分必要条件为a+b+c=0。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B。
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
设总体X的分布函数为其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本。求:(Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量。
设随机变量X的概率密度为f(x)=令随机变量(Ⅰ)求Y的分布函数;(Ⅱ)求概率P{X≤Y}。
设半径为R的球之球心位于以原点为中心、a为半径的定球面上(2a>R>0,a为常数).试确定R为何值时前者夹在定球面内部的表面积为最大,并求出此最大值.
位于点(0,1)的质点A对质点M的引力大小为(其中常数k>0,且r=|AM|),质点M沿曲线L:y=自点B(2,0)到点(0,0),求质点A对质点M所做的功.
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f’(0)存在
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点,若极径OM0,OM与曲线L所围成的曲边扇形面积值等于L上M0,M两点间弧长值的一半,求曲线L的方程.
随机试题
像“××集团举行周年庆典,您的手机号码被抽中获得了10万元大奖”这类并不高明的手机诈骗短信,即使经媒体曝光后仍然一再出现。职业骗子宁肯使用低劣的诈骗短信,也不去设计一些更具欺骗性、更易让人上当的短信,只能说明骗子太笨、太不敬业了。以下陈述如果为真,则
何谓基因重组?简述基因工程的基本原理。
小儿哮喘的主要内因是
患者女,40岁。患阴道炎,护士遵医嘱进行阴道栓剂插入治疗。应将栓剂送入阴道何处
某县政府依蔡某的申请,作出行政复议决定,撤销县房管局对蔡某房屋的错误登记,并责令县房管局在一定期限内重新登记。县房管局拒不执行该行政复议决定,则下列关于蔡某依法可以采取的措施的说法,错误的是()
自动化仪表线路包括仪表电线、电缆、()、光缆和电缆槽、保护管等附件。
《建筑业企业资质管理规定》属于()。
个人申请保荐代表人资格,应当通过所任职的保荐机构向中国证监会提交的材料包括()。I.证券业从业人员资格考试、保荐代表人胜任能力考试报名表Ⅱ.证券业执业证书Ⅲ.申请报告Ⅳ.保荐机构对申请文件真实性、准确性、完整
计提减值准备和计提折旧充分体现了谨慎性的要求。()
什么是创造性?它包括哪些心理成分?
最新回复
(
0
)