首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
admin
2018-06-15
62
问题
已知λ
1
,λ
2
,λ
3
是A的特征值,α
1
,α
2
,α
3
是相应的特征向量且线性无关,如α
1
+α
2
+α
3
仍是A的特征向量,则λ
1
=λ
2
=λ
3
.
选项
答案
若α
1
+α
2
+α
3
是矩阵A属于特征值A的特征向量,即 A(α
1
+α
2
+α
3
)=λ(α
1
+α
2
+α
3
). 又A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,于是 (λ-λ
1
)α
1
+(λ-λ
2
)α
2
+(λ-λ
3
)α
3
=0. 因为α
1
,α
2
,α
3
线性无关,故λ-λ
1
=0,λ-λ
2
=0,λ-λ
3
=0. 即λ
1
=λ
2
=λ
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/vDg4777K
0
考研数学一
相关试题推荐
问A为何值时,线性方程组有解,并求出解的一般形式.
设向量组α1,α4,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1讨论向量组β1,β2,…,βs的线性相关性.
设A是m×n矩阵,B是n×m矩阵,E+AB可逆.设其中,利用(1)证明:P可逆,并求P-1.
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关.证明:A不可逆.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量线性无关.
已知三元二次型XTAX经正交变换化为,又知矩阵B满足矩阵方程其中α=[1,1,-1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设A,B均为n阶矩阵,A可逆且A~B,则下列命题中:①AB~BA;②A2~B2;③AT~BT;④A-1~B-1正确命题的个数为()
随机试题
在考生文件夹下有一个数据库文件“samp3.accdb”,里面已经设计了表对象“tEmp”、窗体对象“fEmp”、宏对象“mEmp”和报表对象“rEmp”。同时,给出窗体对象“fEmp”的“加载”事件和“预览”及“打印”两个命令按钮的单击事件代码,请按以
肉芽组织
集权
CSTNet指的是()
由业主提供的工程担保有()。
凭证审核、记账、查询、结账由操作员BB审核凭证并签章,记账,查询银行存款日记账,查询科目汇总表,结账。
太阳风中的一部分带电粒子可以到达M星表面,将足够的能量传递给M星表面粒子,使后者脱离M星表面,逃逸到M星大气中。为了判定这些逃逸的粒子,科学家们通过三个实验获得了如下信息:实验一:或者是X粒子,或者是Y粒子;实验二:或者不是Y粒子,或者
APA是()的简称。
影响人身心发展的因素主要有()
公有制的主体地位主要体现在()。
最新回复
(
0
)