首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1(x)和y2(x)是微分方程y“+p(x)y+q(x)y=0的两个特解,则由y1(x),y2(x)能构成该方程的通解的充分条件为( )
设y1(x)和y2(x)是微分方程y“+p(x)y+q(x)y=0的两个特解,则由y1(x),y2(x)能构成该方程的通解的充分条件为( )
admin
2021-02-25
101
问题
设y
1
(x)和y
2
(x)是微分方程y“+p(x)y+q(x)y=0的两个特解,则由y
1
(x),y
2
(x)能构成该方程的通解的充分条件为( )
选项
A、y
1
(x)y‘
2
(x)-y‘
1
(x)y
2
(x)=0
B、y
1
(x)y‘
2
(x)-y
2
(x)y‘
1
(x)≠0
C、y
1
(x)y‘
2
(x)+y‘
1
(x)y
2
(x)=0
D、y
1
(x)y‘
2
(x)+y
2
(x)y‘
1
(x)≠0
答案
B
解析
y
1
(x),y
2
(x)能构成该方程的通解,需y
1
(x)与y
2
(x)线性无关.由(B)知y‘
2
(x)/y
2
(x)≠y‘
1
(x)/y
1
(x),即lny
2
(x)≠lny
1
(x)+C,从而y
2
(x)/y
1
(x)不为常数,即y
1
(x)与y
2
(x)线性无关,因此应选B.
转载请注明原文地址:https://kaotiyun.com/show/vO84777K
0
考研数学二
相关试题推荐
设f(x,y)有连续的偏导数且f(x,y)(ydx+xdy)为某一函数u(x,y)的全微分,则下列等式成立的是
设函数y=f(x)的增量函数△y=f(x+△x)-f(x)=+o(△x),且f(0)=π,则f(-1)为().
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫0χ(2u-χ)f(χ-u)du,则φ(χ)是().
微分方程y”-2y’﹢y=ex的特解形式为()
设函数F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx′(x0,y0)=0,Fy′(x0,y0)>0,Fxx″(x0,y0)<0.由方程F(x,y)=0在x0的某邻域确定的隐函数y=y(x),它有连续的二阶导数,且y(x0)=
求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值.
(1993年)设平面图形A由χ2+y2≤2χ与y≥χ所确定,求图形A绕直线χ=2旋转一周所得旋转体的体积。
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
(2013年)设曲线L的方程为y=(1≤χ≤e)(Ⅰ)求L的弧长;(Ⅱ)设D是由曲线L,直线χ=1,χ=e及χ轴所围平面图形.求D的形心的横坐标.
(94年)设当x>0时,方程有且仅有一个解.求k的取值范围.
随机试题
有关主诉的内容,不正确的是
Vita瓷粉经过7次烘烤后,其热膨胀系数
全身淋巴结肿大提示
护士进行晨间护理的内容不包括
国家主席、副主席都缺位的时候,由全国人大补选;在补选以前,由( )暂时代理主席职位。
在信用证业务的有关当事人之间,存在契约关系的有()
某幼儿园大班的幼儿在课间排队上厕所。两名老师分工,王老师在洗手间看护,张老师在教室看护。哲哲从洗手间出来往座位走,经过宽宽身边时,被宽宽伸出的腿绊倒。在教室的张老师看见哲哲被宽宽伸出的腿绊倒,立即跑过去想要抱住他,但哲哲还是磕在木椅边缘。两位老师立即将哲哲
成立于抗日战争时期的人民公安机关是()。
代位继承的成立条件()。
Todaywe’regoingtodiscussthe【L1】______oftheworld’spopulation,whichisan【L2】______worldwide.First,I’llfocusontwo
最新回复
(
0
)