首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1(x)和y2(x)是微分方程y“+p(x)y+q(x)y=0的两个特解,则由y1(x),y2(x)能构成该方程的通解的充分条件为( )
设y1(x)和y2(x)是微分方程y“+p(x)y+q(x)y=0的两个特解,则由y1(x),y2(x)能构成该方程的通解的充分条件为( )
admin
2021-02-25
66
问题
设y
1
(x)和y
2
(x)是微分方程y“+p(x)y+q(x)y=0的两个特解,则由y
1
(x),y
2
(x)能构成该方程的通解的充分条件为( )
选项
A、y
1
(x)y‘
2
(x)-y‘
1
(x)y
2
(x)=0
B、y
1
(x)y‘
2
(x)-y
2
(x)y‘
1
(x)≠0
C、y
1
(x)y‘
2
(x)+y‘
1
(x)y
2
(x)=0
D、y
1
(x)y‘
2
(x)+y
2
(x)y‘
1
(x)≠0
答案
B
解析
y
1
(x),y
2
(x)能构成该方程的通解,需y
1
(x)与y
2
(x)线性无关.由(B)知y‘
2
(x)/y
2
(x)≠y‘
1
(x)/y
1
(x),即lny
2
(x)≠lny
1
(x)+C,从而y
2
(x)/y
1
(x)不为常数,即y
1
(x)与y
2
(x)线性无关,因此应选B.
转载请注明原文地址:https://kaotiyun.com/show/vO84777K
0
考研数学二
相关试题推荐
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
微分方程xy”-y’=x的通解是_______.
设y=f(χ,t),而t是由方程G(χ,y,t)=0确定的χ,y的函数,其中f(χ,t),G(χ,y,t)为可微函数,求.
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫0χ(2u-χ)f(χ-u)du,则φ(χ)是().
设函数F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx′(x0,y0)=0,Fy′(x0,y0)>0,Fxx″(x0,y0)<0.由方程F(x,y)=0在x0的某邻域确定的隐函数y=y(x),它有连续的二阶导数,且y(x0)=
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。问k为何值时,f(x)在x=0处可导。
(1993年)设平面图形A由χ2+y2≤2χ与y≥χ所确定,求图形A绕直线χ=2旋转一周所得旋转体的体积。
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
曲线y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕X轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。求S(t)/V(t)的值;
随机试题
Windows的“任务栏”中的“开始”菜单可用_____键激活。
食管癌患者发生吻合口瘘的原因包括()。
湿热壅滞,腹痛拒按,治宜
惊悸怔忡属饮邪上犯者,其最佳治疗方剂是
随着经济的发展,()已成为我国财产保险业务中最大的险种
目前,我国证券投资基金的会计核算应分别独立进行()。
AfewdaysagoIaskedmysons’govemess(女家庭教师)Juliatocomeintomystudy.“Beseated,Julia,”Isaid,“Lettlssettleouraccounts.I
试论物权法的基本原则。
据说在英国人那里也出现了英语【a】的问题,或者说,英语圈内也发生了非规范化向规范化的冲击。真是“吾道不孤”——人们多以为现代汉语非规范化现象太使人生气,原来“天下乌鸦一般黑”,这【b】的恶魔到处在横行霸道。这是英国伦敦一个被称为“保守的思想库”—
关于TCP和UDP端口,下列说法正确的是()。
最新回复
(
0
)