首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关; (2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关; (2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分
admin
2019-01-05
93
问题
(1)设λ
1
,λ
2
,…,λ
n
是n阶矩阵A的互异特征值,α
1
,α
2
,…,α
n
是A的分别对应于这些特征值的特征向量,证明α
1
,α
2
,…,α
n
线性无关;
(2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ
1
,λ
2
,…,λ
n
互异,α
i
分别是方程组(A—λ
i
B)x=0的非零解,i=1,2,…,n.证明α
1
,α
2
,…,α
n
线性无关.
选项
答案
(1)用数学归纳法. ①由特征向量α
1
≠0,故α
1
线性无关; ②假设前k一1个向量α
1
,α
2
,…,α
k-1
线性无关,以下证明α
1
,α
2
,…,α
k
线性无关.k个互异特征值λ
1
,λ
2
,…,λ
k
对应着特征向量α
1
,α
2
,…,α
k
.现设存在一组数l
1
,l
2
,…,l
k
,使得 l
1
α
1
+l
2
α
2
+…+l
k
α
k
=0, (*) 在(*)式两端左边乘A,有l
1
Aα
1
+l
2
Aα
2
+…+l
k
Aα
k
=0,即 l
1
λ
1
α
1
+l
2
λ
2
α
2
+…+l
k
λ
k
α
k
=0. (**) 又在(*)式两端左边乘λ
k
,有l
1
λ
1
α
1
+l
2
λ
2
α
2
+…+l
k
λ
k
α
k
=0. (***) 用(**)式减去(***)式,得 l
1
(λ
1
—λ
k
)α
1
+l
2
(λ
2
一λ
k
)α
2
+…+l
k-1
(λ
k-1
一λ
k
)α
k-1
=0. 由归纳假设α
1
,α
2
,…,α
k-1
线性无关,故 l
1
(λ
1
一λ
k
)=l
2
(λ
2
一λ
k
)=…=l
k-1
(λ
k-1
一λ
k
)=0, 又λ
i
—λ
k
≠0(i=1,2,…,k一1),故l
1
=l
2
=…=l
k-1
=0. 代回(*)式,于是l
k
α
k
=0,由α
k
≠0,有l
k
=0,于是α
1
,α
2
,…,α
k
线性无关. 即A的n个互异特征值对应的特征向量α
1
,α
2
,…,α
n
线性无关. (2)由|B|≠0,在|A一λB|=0两端左边乘|B
-1
|,有 |B
-1
A一λE|=0,即|λE一B
-1
A|=0, 于是λ
1
,λ
2
,…,λ
n
是矩阵B
-1
A的n个互异特征值. 又由(A-λ
i
B)x=0,两端左边乘B
-1
,有 (B
-1
A—λ
i
E)x=0,即(λ
i
E一B
-1
A)x=0,故α
1
,α
2
,…,α
n
为B
-1
A的对应于λ
1
,λ
2
,…,λ
n
的特征向量,由(1)知,α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/vZW4777K
0
考研数学三
相关试题推荐
设某工厂产甲、乙两种产品,设甲、z,N种产品的产量分别为x和y(吨),其收入函数为R=15x+34y—x2一2xy一4y2一36(万),设生产甲产品每吨需要支付排污费用1万,生产乙产品每吨需要支付排污费用2万.当排污总费用为6万时,这两种产品产量各多少
曲线的渐近线条数为().
求幂级数的收敛区域与和函数.
设z=z(x,y)二阶连续可偏导且满足方程在变换下,原方程化为求a,b的值.
设随机变量X的概率密度为对X作两次独立观察,设两次的观察值为X1,X2,令求常数a及P{X1<0,X2>1);
设随机变量则(X,Y)的联合分布律为________.
设常数a<b<c,求证:方程在区间(a,b)与(b,c)内各有且仅有一个实根.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+x=0无实根的概率为0.5,则μ=__________。
求下列不定积分:
随机试题
根据《治安管理处罚法》的规定,出租汽车司机王某在公安机关查处特定违法犯罪活动时,为违法犯罪行为人通风报信的,构成违反治安管理行为。下列属于公安机关查处的特定违法犯罪活动的是()。
TheUnfairStigmaSurroundingMillennialsandTheirMoneyA)Millennialsoftengetabadrap(不公正的对待)whenitcomestoresp
()是投资基金中最主要的一种类别。
结肠癌最早出现的症状是
实行工程预付款的,双方应当在项目专用条款内约定发包人向承包人预付工程款的时问和数额,开工后按()扣回。
从装满1000克酒精、浓度为52%的酒瓶中倒出200克酒精,再倒人蒸馏水将瓶加满,这样反复3次后,酒瓶中的酒精浓度是多少?()
列宁给社会主义下的定义是“苏维埃政权加全国电气化”。对这一定义理解正确的是()。
某项目成本偏差(CV)大于0,进度偏差(SV)小于0,则该项目的状态是(163)。
Afterthewar,anewschoolbuildingwasputup______therehadoncebeenatheatre.
Airlinecompaniestodayrequirethatallluggage______morestrictly.
最新回复
(
0
)