首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(I)为 齐次线性方程组(Ⅱ)的基础解系为 ξ1=[一1,1,2,4]T,ξ2=[1,0,1,1]T (1)求方程组(I)的基础解系; (2)求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ
已知齐次线性方程组(I)为 齐次线性方程组(Ⅱ)的基础解系为 ξ1=[一1,1,2,4]T,ξ2=[1,0,1,1]T (1)求方程组(I)的基础解系; (2)求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ
admin
2018-09-20
53
问题
已知齐次线性方程组(I)为
齐次线性方程组(Ⅱ)的基础解系为
ξ
1
=[一1,1,2,4]
T
,ξ
2
=[1,0,1,1]
T
(1)求方程组(I)的基础解系;
(2)求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示.
选项
答案
(1)对齐次线性方程组(I)的系数矩阵作初等行变换,得 [*] 故其同解方程组为 [*] 由此解得方程组(I)的基础解系为 η
1
=[2,一1,1,0]
T
,η
2
=[一1,1,0,1]
T
. (2)由(1)解得方程组(I)的基础解系η
1
,η
2
.于是,方程组(I)的通解为 k
1
η
1
+k
2
η
2
=k
1
[2,一1,1,0]
T
+k
2
[一1,1,0,1]
T
(k
1
,k
2
为任意常数). 由题设知,方程组(Ⅱ)的基础解系为ξ
1
,ξ
2
,其通解为 l
1
ξ
1
+l
2
ξ
2
=l
1
[一1,1,2,4]
T
+l
2
[1,0,1,1]
T
(l
1
,l
2
为任意常数). 为求方程组(I)与(Ⅱ)的公共解,令它们的通解相等,即 k
1
[2,一1,1,0]
T
+k
2
[一1,1,0,1]
T
=l
1
[一1,1,2,4]
T
+l
2
[1,0,1,1]
T
. 从而,得到关于k
1
,k
2
,l
1
,l
2
的方程组 [*] 对此方程组的系数矩阵作初等行变换,得 [*] 由此可得,k
1
=k
2
=l
2
,l
1
=0. 所以,令k
1
=k
2
=k,方程组(I),(Ⅱ)的非零公共解是 k[2,一1,1,0]
T
+k[一1,1,0,1]
T
=k[1,0,1,1]
T
(k为任意非零常数). 并且,方程组(I),(Ⅱ)的非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示为 k(η
1
+η
2
)和0.ζ
1
+kζ
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/vkW4777K
0
考研数学三
相关试题推荐
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2一3α1一α3一α5,α4—2α1+α3+6α5,求方程组AX=0的通解.
设随机变量X1,X2,X3,X4独立同分布,且X1~(i=1,2,3,4),求X=的概率分布.
设X1,…,X9为来自正态总体X~N(μ,σ2)的简单随机样本,令证明:Z~f(2).
求二元函数z=f(x,y)=x2y(4一x一y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设随机变量X服从参数为2的指数分布,证明:Y=1一e一2X在区间(0,1)上服从均匀分布.
设X的密度函数为fX(x)=(一∞<x<+∞),求Y=1一密度fY(y).
差分方程yt+1一2yt=3×2t的通解为y(t)=________.
曲线的斜渐近线为________.
利用代换u=ycosx将微分方程y"cosx—2y’sinx+3ycosx=ex化简,并求出原方程的通解。
行列式
随机试题
关于经阴道超声检查的优势,下列叙述不正确的是
有防腐作用的牛乳掺假物是
下列何结构位于十二指肠降部的后内侧壁?()
设备状态监测与故障诊断的任务是()。
盖碗茶是()族人的饮食习俗。
某公司用两个工厂生产一种产品,其总成本函数为C=2Q12+Q22一Q1Q2,其中Q1表示第一个工厂生产的产量,Q2表示第二个工厂生产的产量。求:当公司生产的总产量为40时能够使得公司生产成本最小的两工厂的产量组合。
在两队进行的羽毛球对抗赛中,每队派出3男2女共5名运动员进行5局单打比赛,如果女子比赛安排在第二和第四局进行,则每队队员的不同出场顺序有().
GrandTetonNationalPark______themostscenicportionoftheglaciated,snow-coveredTetonRange.
Nowastothematteroflying.Youwanttobeverycarefulaboutlying;otherwiseyouarenearlysuretogetcaught.Oncecaught
PassageTwoWhatistheauthor’sattitudetowardsthe35-hourweekpolicy?
最新回复
(
0
)