首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
admin
2019-01-06
31
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量组,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)
T
,则A
*
x=0的基础解系为( )
选项
A、α
1
,α
2
,α
3
B、α
1
+α
2
,α
2
+α
3
,α
1
+α
3
C、α
2
,α
3
,α
4
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
答案
C
解析
方程组Ax=0的基础解系只含一个解向量,所以四阶方阵A的秩r(A)=4—1=3,则其伴随矩阵A
*
的秩r(A
*
)=1,于是方程组A
*
x=0的基础解系含有三个线性无关的解向量。
又A
*
(α
1
,α
2
,α
3
,α
4
)=A
*
A=|A|E=O,所以向量α
1
,α
2
,α
3
,α
4
都是方程组A
*
x=0的解。将(1,0,2,0)
T
代入方程组Ax=0可得α
1
+2α
3
=0,这说明α
1
可由向量组α
2
,α
3
,α
4
线性表出,而向量组α
1
,α
2
,α
3
,α
4
的秩等于3,所以向量组α
2
,α
3
,α
4
必线性无关。所以选C。
事实上,由α
1
+2α
3
=0可知向量组α
1
,α
2
,α
3
线性相关,选项A不正确;显然,选项B中的向量都能被α
1
,α
2
,α
3
线性表出,说明向量组α
1
+α
2
,α
2
+α
3
,α
1
+α
3
线性相关,选项B不正确;而选项D中的向量组含有四个向量,不是基础解系,所以选型D也不正确。
转载请注明原文地址:https://kaotiyun.com/show/vpW4777K
0
考研数学三
相关试题推荐
设δ>0,f(x)在(一δ,δ)内恒有f’’(x)>0,且|f(x)|≤x2,记I=∫δδf(x)dx,则有().
已知总体X的密度函数为其中θ,β为未知参数,X1,…,Xn为简单随机样本,求θ和β的矩估计量.
设总体X和y相互独立,分别服从N(μ,σ12),N(μ,σ22).X1,X2,…,Xm和Y1,Y2,…,Yn是分别来自X和Y的简单随机样本,其样本均值分别为,样本方差分别为SX2,SY2.令求EZ.
过原点作曲线y=lnx的切线,设切点为x0,且由曲线y=lnx,直线y=0,x=x0所围平面图形的面积与由曲线y=x3,直线y=0,x=a所围平面图形的面积相等,求a的值.
设则
设f(x)在x=0的某邻域内有连续的一阶导数,且f’(0)=0,f’’(0)存在.求证:
已知A是3阶不可逆矩阵,一1和2是A的特征值,B=A2一A一2E,求B的特征值,并问B能否相似对角化,并说明理由.
已知求A的特征值、特征向量,并判断A能否相似对角化,说明理由.
设则f(x)有().
随机试题
弹性式压力表主要分为单圈弹簧管压力表、多圈弹簧管压力表、波纹管式压力计、电接点压力表等。输气站常用的是()。
A.高颈段损害B.颈膨大损害C.胸髓损害D.腰膨大损害E.脊髓圆锥损害
强直收缩中,关于肌肉的动作电位描述不正确的是()。
资产负债表日,交易性金融资产的公允价值高于其账面余额的差额,借记“交易性金融资产”科目,贷记()。
()不属于劳动争议的标的。
“把一切事物教给一切人类的全部艺术”的提出者是
Heisbutachild.
Generallyspeaking,aBritishiswidelyregardedasaquiet,shyandconservativepersonwhois【C1】______onlyamongthosewithw
Doctor:_________Patient:I’vecaughtabadcoldandgotasourthroat.
WhydidJim’sparentshaveaserioustalkwithhimoneyearago?BecauseJimhadspentalotoftimeon______.
最新回复
(
0
)