首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有 |f(x1)一f(x2)|<.
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有 |f(x1)一f(x2)|<.
admin
2018-11-21
22
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于
x
1
,x
2
∈[0,1],有
|f(x
1
)一f(x
2
)|<
.
选项
答案
联系f(x
1
)一f(x
2
)与f’(x)的是拉格朗日中值定理.不妨设0≤x
1
≤x
2
≤1.分两种情形: 1)若x
2
一x
1
<[*],直接用拉格朗日中值定理得 |f(x
1
)一f(x
2
)|=|f’(ξ)(x
2
一x
1
)|=|f’(ξ)||x
2
一x
1
|<[*]. 2)若x
2
一x
1
≥[*],当0<x
1
<x
2
<1时,利用条件f(0)=f(1)分别在[0,x
1
]与[x
2
,1]上用拉格朗日中值定理知存在ξ∈(0,x
1
),η∈(x
2
,1)使得 |f(x
1
)一f(x
2
)|=|[f(x
1
)—f(0)]一[f(x
2
)一f(1)]| ≤|f(x
1
)一f(0)|+|f(1)一f(x
2
)| =|f’(ξ)x
1
|+|f’(η)(1一x
2
)| <x
1
+(1一x
2
)=1一(x
2
一x
1
)≤[*], ①当x
1
=0且x
2
≥[*]时,有 |f(x
1
)一f(x
2
)|=|f(0)一f(x
2
)|=|f(1)一f(2)|=|f’(η)(1一x
2
)|<[*]. ②当x
1
≤[*]且x
2
=1时,同样有 |f(x
1
)一f(x
2
)|=|f(x
1
)一f(1)I=|f(x
1
)—f(0)|=|f’(ξ)(x
1
—0)|<[*]. 因此对于任何x
1
,x
2
∈[0,1]总有 |f(x
1
)一f(x
2
)|<[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/vpg4777K
0
考研数学一
相关试题推荐
微分方程y″+2y′+y=xe-x的特解形式为().
设f(0)=g(0),f′(0)=g′(0),f″(x)<g″(x)(当x>0时),证明当x>0时,f(x)<g(x).
若A、B为两个n阶矩阵,且ABA=B-1,证明:秩(E-AB)+秩(E+AB)=n.
设f(x)在[a,+∞)上可导,且当x>a时,f′(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a一]上有且仅有一个实根.
已知幂级数在x=1处条件收敛,则幂级数的收敛半径为_________。
设f(x)有二阶连续导数,且f’(0)=0,,则()
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
求二重积分,其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域。
如图1-3-2所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分
设C为椭圆+(x2y+x)dy=_______.
随机试题
病例发现
患者,男,35岁,3个月来发热,乏力,盗汗,食欲不振。查体:体重减轻,一般状况尚可。实验室检查:痰结核分枝杆菌阳性,初步诊断为肺结核收入院。医嘱行PPD试验。请问,PPD试验结果阳性的判定标准为皮肤硬结直径达()
不符合施工成本管理组织机构设置要求的是()。
提高物流服务机械化属于物流成本管理系统。()
健身功能是体育的基本功能,它可以提高人体心血管系统机能,提高()水平。
粮食学群人和人见面,会问上一句:吃饭了吗?后来人们认为这样的问法很土,多半不这样问了,可是在乡下,那些种粮食的人,依旧这样问着,种粮食的人
据统计,去年某校参加高考的385名文、理科考生中,女生189人,文科男生41人,非应届男生28人,应届理科考生256人。由此可见,去年在该校参加高考的考生中:
简述古希腊克里斯提尼改革的主要内容与意义。
发展必须坚持以人为本,社会主义的本质要求是
中国特色社会主义的根本原则是
最新回复
(
0
)