首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有 |f(x1)一f(x2)|<.
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有 |f(x1)一f(x2)|<.
admin
2018-11-21
26
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于
x
1
,x
2
∈[0,1],有
|f(x
1
)一f(x
2
)|<
.
选项
答案
联系f(x
1
)一f(x
2
)与f’(x)的是拉格朗日中值定理.不妨设0≤x
1
≤x
2
≤1.分两种情形: 1)若x
2
一x
1
<[*],直接用拉格朗日中值定理得 |f(x
1
)一f(x
2
)|=|f’(ξ)(x
2
一x
1
)|=|f’(ξ)||x
2
一x
1
|<[*]. 2)若x
2
一x
1
≥[*],当0<x
1
<x
2
<1时,利用条件f(0)=f(1)分别在[0,x
1
]与[x
2
,1]上用拉格朗日中值定理知存在ξ∈(0,x
1
),η∈(x
2
,1)使得 |f(x
1
)一f(x
2
)|=|[f(x
1
)—f(0)]一[f(x
2
)一f(1)]| ≤|f(x
1
)一f(0)|+|f(1)一f(x
2
)| =|f’(ξ)x
1
|+|f’(η)(1一x
2
)| <x
1
+(1一x
2
)=1一(x
2
一x
1
)≤[*], ①当x
1
=0且x
2
≥[*]时,有 |f(x
1
)一f(x
2
)|=|f(0)一f(x
2
)|=|f(1)一f(2)|=|f’(η)(1一x
2
)|<[*]. ②当x
1
≤[*]且x
2
=1时,同样有 |f(x
1
)一f(x
2
)|=|f(x
1
)一f(1)I=|f(x
1
)—f(0)|=|f’(ξ)(x
1
—0)|<[*]. 因此对于任何x
1
,x
2
∈[0,1]总有 |f(x
1
)一f(x
2
)|<[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/vpg4777K
0
考研数学一
相关试题推荐
设随机变量X1,X2,X3,X4相互独立,且都服从正态分布N(0,σ2).如果二阶行列式Y=的方差D(Y)=,则σ2=___________.
已知α1,α2,α3是Ax=0的基础解系,则Ax=0的基础解系还可以表示为().
设f(x)=又设f(x)展开的正弦级数为S(x)=则S(3)=().
下列积分中,积分值等于0的是().
设在全平面上有>0,则下列条件中能保证f(x1,y1)<f(x2,y2)的是().
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系.
设X的概率密度函数f(x)=已知P(X≤1)=,则E(X2)=___________.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=tsαs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
如图1-3-2所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分
设x=2a+b,y=ka+b,其中|a|=1,|b|=2,且a⊥b.若以x和y为邻边的平行四边形面积为6,则k的值为_________.
随机试题
一般厚度小于5mm的焊件采用超声波探伤,而不采用X射线探伤。
Oneofthemostimportantfeaturesthatdistinguishesreadingfromlisteningisthenatureoftheaudience.【C1】______thewriter
玉女煎中配伍牛膝的用意是
子宫内膜癌早期最常见的症状是( )
土鳖虫的有效成分是鹿茸的化学成分是
A、外感病属邪犯少阳证者B、外感风热时毒C、感冒属暑热者D、流行性腮腺炎及轻中型乙型脑炎E、病毒性感冒清热解毒颗粒的主治病证是
劳动争议的仲裁中,仲裁时效期间从当事人签订劳动合同之日起计算。()
机关对晋升领导职务的公务员应当在任职前或者任职后一年内进行任职培训。()
所有蚀刻工具要么是针嘴的,要么是平刃的。但是,有些平刃的蚀刻工具用于雕刻,有些不是。另一方面,所有针嘴的蚀刻工具都用于雕刻。因此,用于雕刻的蚀刻工具比不用于雕刻的蚀刻工具多。如果以下哪项陈述为真,能合乎逻辑地得出上述论证的结论?
Shewasclosetosuccess.
最新回复
(
0
)