首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ+η=k(1,2,-3)T+(2,-1,1)T,其中k是任意常数.证明: 方程组(α1,α2)x=β有唯一解,并求该解;
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ+η=k(1,2,-3)T+(2,-1,1)T,其中k是任意常数.证明: 方程组(α1,α2)x=β有唯一解,并求该解;
admin
2018-07-23
51
问题
设A
3×3
=(α
1
,α
2
,α
3
),方程组Ax=β有通解kξ+η=k(1,2,-3)
T
+(2,-1,1)
T
,其中k是任意常数.证明:
方程组(α
1
,α
2
)x=β有唯一解,并求该解;
选项
答案
由题设条件(α
1
,α
2
,α
3
)x=β有通解k(1,2,-3)
T
+(2,-1,1)
T
,知 r(α
1
,α
2
,α
3
)= r(α
1
,α
2
,α
3
,β)=2, (*) α
1
+2α
2
-3α
3
=0. (**) β=(k+2)α
1
+(2k-1)α
2
+(-3k+1) α
3
. (***) 由(**)式得α
3
=[*](α
1
+2α
2
),知α
1
,α
2
线性无关(若α
1
,α
2
线性相关,又α
3
=[*](α
1
+2α
2
),得r(α
1
,α
2
,α
3
)=1.这和(*)式矛盾).由(*)式知α
1
,α
2
是向量组α
1
,α
2
,α
3
及α
1
,α
2
,α
3
,β的极大线性无关组,从而有r(α
1
,α
2
)=r(α
1
,α
2
,β)=2,方程组(α
1
,α
2
)x=β有唯一解. 由(***)式取α
3
的系数-3k+1=0,即取[*],即(α
1
,α
2
)x=β的唯一解为[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/vsj4777K
0
考研数学二
相关试题推荐
[*]
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l1:bx+2cy+3a=0,l1:cx+2ay+36=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
二阶常系数非齐次线性微分方程y"-4y’+3y=2e2x的通解为y=_________.
设A为3阶矩阵,a1,a2为A的分别属于特征值-1、1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3,求P-1AP.
设y=f(x)在(1,1)邻域有连续二阶导数,曲线y=f(x)在点P(1,1)处的曲率圆方程为x2+y2=2,则f’’(1)=__________.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
求微分方程y"+4y’+4y=0的通解.
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。求曲线x=φ(
随机试题
简述网络营销的职能。
小儿时期最常见的出血性疾病是
下列不是闭经与痛经的共同病机的是()
期货公司行为严重危及期货公司的稳健运行、损害客户合法权益,或者涉嫌严重违法违规正在被国务院期货监督管理机构调查的,国务院期货监督管理机构可以区别情形,对其采取的措施有()。
()不属于外部聘请师资的优点。
添附理论中的加工是指()。
2009年全国研究生教育招生51.1万人,毕业37.1万人,年末在校生人数为140.5万。普通高等教育本专科招生639.5万人,毕业531.1万人,年末在校生人数为2144.7万。各类中等职业教育招生873.6万人,毕业619.2万人,年末在校生人数217
我甚至要说,它是一个奇迹。世上只有极少数作品,如此一又如此质朴,如此________又如此平易近人,从内容到形式都几近于完美,却不落丝毫斧凿痕迹,宛若一块________的美玉。填入划横线部分最恰当的一项是()。
二进制数101001转换成十进制整数等于()。
TheUnitedStates(56)alargepartoftheNorthAmericancontinent.ItsneighborsareCanada(57)thenorth,(58)Mexicotothe
最新回复
(
0
)