首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4阶实对称矩阵,且A2+A=O.若A的秩为3。则A相似于
设A为4阶实对称矩阵,且A2+A=O.若A的秩为3。则A相似于
admin
2019-05-06
61
问题
设A为4阶实对称矩阵,且A
2
+A=O.若A的秩为3。则A相似于
选项
A、
B、
C、
D、
答案
D
解析
设A按列分块为A=[α
1
,α
2
,α
3
,α
4
],由r(A)=3,知A的列向量组的极大无关组含3个向量,不妨设α
1
,α
2
,α
3
是A的列向量组的极大无关组.由于A
2
=一A,即
A[α
1
α
2
α
3
α
4
]=一[α
1
α
2
α
3
α
4
],
即 [Aα
1
Aα
2
Aα
3
Aα
4
]=[一α
1
—α
2
—α
3
—α
4
],
得Aα
j
=一α
j
,j=1,2,3,4.
由此可知一1是A的特征值值且α
1
,α
2
,α
3
为对应的3个线性无关的特征向量,故一1至少是A的3重特征值.
而r(A)=3<4,知0也是A的一个特征值.于是知A的全部特征值为:一1,一1,一1,0,且每个特征值对应的线性无关特征向量个数正好等于该特征值的重数,故A相似于对角矩阵D=diag(一1,一1,一1,0),故选项D正确.
转载请注明原文地址:https://kaotiyun.com/show/vt04777K
0
考研数学一
相关试题推荐
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设有微分方程y’-2y=φ(x),其中φ(x)=,在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设f(x)为连续函数,计算+yf(x2+y2)]dxdy,其中D是由y=x3,y=1,x=-1围成的区域.
设随机变量X的密度函数为f(x)=1/2e|x|(-∞<x<+∞).求Cov(X,|X|),问X,|X|是否不相关?
设随机变量(X,Y)的联合密度函数为f(x,y)=求P(X>2Y);
设X的密度函数为fX(x)=(-∞<x<+∞),求Y=1-的密度fY(y).
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化.
设总体X服从正态分布N(μ,σ2)(σ>0),X1,X2,…,Xn为来自总体X的简单随机样本,令Y=1/n|Xi-μ|,求Y的数学期望与方差.
设方程组为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量.求|A*+3E|.
设总体X的密度函数为f(x)=θ>0为未知参数,a>0为已知参数,求θ的极大似然估计量.
随机试题
阅读下文,回答问题。温暖的村庄安庆村庄真是一个固执的地方
()对于《史记》相当于刻舟求剑对于()。
甲企业、乙企业和朱某作为发起人募集设立了丙股份有限公司,丙公司共有200万股股份,甲企业持有丙公司40万股股份.乙企业持有丙公司20万股股份,朱某持有丙公司10万股股份,其余股份以无记名股票的形式发放募集。丙公司章程中规定实行累积投票制。丙公司为奖励公司杰
一般识别声音所需要的最短持续时间为()ms。
平等的市场主体应该享有平等地接近和享用经济要素的权利,()是保证农民平等地享用经济资源,是统筹城乡经济社会发展的关键。
用不超过150字的篇幅,概括出上述资料的主要内容。用不超过350字的篇幅,针对资料所反映的问题,提出解决方案或应对措施,该方案或措施要有可行性。
设不定积分的结果中不含对数函数,求常数α,β,γ,δ应满足的充要条件,并计算此不定积分.
一台交换机具有48个10/100Mbit/s端口和2个1000Mbit/s端口,如果所有端口都工作在全双工状态,那么交换机总带宽应为()。
Marywasgoingtoaweddingsoshebrushed______well.
Humanbehaviorismostlyaproductoflearning,whereasthebehaviorofananimaldependsmainlyon________.
最新回复
(
0
)