首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
admin
2019-08-23
71
问题
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
选项
答案
因为f(χ)在[a,b]上不恒为常数且f(a)=f(b),所以存在c∈(a,b),使得 f(c)≠f(a)=f(b),不妨设f(c)>f(a)=f(b), 由微分中值定理,存在ξ∈(a,c),η∈(c,b),使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vzA4777K
0
考研数学二
相关试题推荐
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
证明:曲线上任一点的切线的横截距与纵截距之和为2.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:存在,使得f(η)=η;
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f′(ξ)+f′(η)=0.
设向量组(Ⅰ):α1,α2,α3;(Ⅱ):α1,α2,α3的秩分别为(Ⅰ)=2,秩(Ⅱ)=3.证明向量组α1,α2,α3+α4的秩等于3.
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.证明:存在ξ1,ξ2∈[-a,a],使得
随机试题
同一个领导层次的机关团体,或者一个机关团体中的各个构成单位,完全集中于一位上级领导或一个上级机关团体的指挥、控制和监督。这种领导体制我们称作
已知某厂生产x件产品的成本为C(x)=25000+200x+x2(元),产品产量x与价格P之间的关系为:P(x)=440一x(元)。求:要使平均成本最小,应生产多少件产品?
24岁,农民,10天前劳动中砍伤足背,未特殊处理。今日觉乏力,烦躁,饮水时张口费力。应考虑的诊断是
根据三级预防的原则,在劳动卫生及职业病工作中,不属于第二级预防工作的是哪一项
在我国基本建设所用的“三大建筑材料”通常是指:[1995年第002题][2006年第001题]
某上市公司针对经常出现中小股东质询管理层的情况,拟采取措施协调所有者与经营者的矛盾。下列各项中,不能实现上述目的的是()。
下列关于企业所得税适用税率的说法中,不正确的是()。
【2016下】美国学者孟禄根据原始社会没有学校、没有教师、没有教材的史实,断言教育起源于儿童对成人的无意识的模仿。这种观点被称为()。
A、 B、 C、 D、 A分数数列。原式可化为,分子是公差为4的等差数列,分母是公差为3的等差数列,因此中间项为。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。()
最新回复
(
0
)