首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3. 证明α1,α2,α3线性无关;
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3. 证明α1,α2,α3线性无关;
admin
2018-09-25
65
问题
设A是3阶矩阵,α
1
,α
2
,α
3
是3维列向量,α
1
≠0,满足Aα
1
=2α
1
,Aα
2
=α
1
+2α
2
,Aα
3
=α
2
+2α
3
.
证明α
1
,α
2
,α
3
线性无关;
选项
答案
由题设条件,得 (A-2E)α
1
=0,(A-2E)α
2
=α
1
,(A-2E)α
3
=α
2
. 对任意常数k
1
,k
2
,k
3
,令 k
1
α
1
+k
2
α
2
+k
3
α
3
=0. ①式两端左边乘A-2E,得k
2
α
1
+k
3
α
2
=0; ②式两端左边乘A-2E,得k
3
α
1
=0. 因α
1
≠0,故k
3
=0,代回②式,得k
2
=0,代回①式得k
1
=0. 故 k
1
α
1
+k
2
α
2
+k
3
α
3
=0=>k
1
=k
2
=k
3
=0, 得证α
1
,α
2
,α
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/w0g4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
设A是n阶矩阵,证明存在非0的n阶矩阵B使AB=0的充分必要条件是|A|=0.
设f(x)在(-∞,a)内可导,f′(x)=β<0.=α>0,求证:f(x)在(-∞,a)内至少有一个零点.
设D由抛物线y=x2,y=4x2及直线y=1所围成.用先x后y的顺序将I=f(x,y)dxdy化成累次积分.
设n维列向量α1,α2,…,αn-1,β线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是()
(88年)设f(x)=,f[φ(x)]=1一x且φ(x)≥0,求φ(x)及其定义域.
(08年)设f(x)是连续函数,(I)利用定义证明函数F(x)=∫0xf(t)dt可导,且F’(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数G(x)=2∫0xf(t)dt一x∫02f(t)dt也是以2为周期的周期函数.
求其中S是椭球面,取外侧.
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放人这十个空盒中,设每个球放人任何一个盒子的可能性都是一样的,并且每个空盒可以放五个以上的球,计算下列事件的概率:C={某个指定的盒子不空}.
随机试题
使用表设计器来定义表的字段时,以下()可以不设置内容。
维生素B12缺乏可导致【】
肾病综合征的一般治疗正确的是
药品监督管理部门在进行监督检查时,应
在建设项目的投资机会研究阶段,误差率应在( )以内。
关键线路具有()等特征。
下列行为中不属于经营者滥用市场支配地位行为的是()。
列举十种校内美术课程资源。
Generallyspeaking,aBritishiswidelyregardedasaquiet,shyandconservativepersonwhois【1】onlyamongthosewithwhomhe
A、Torunthecommitteehisway.B、Tomakehimselfthecommitteechairman.C、Todowhateverthecommitteeaskshimto.D、Tomake
最新回复
(
0
)